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Thermodynamic properties
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Density is an intensive property of a substance because it does
not depend on the amount of that substance; mass and volume,
which are measures of the amount of the substance, are extensive
properties.

This is not the case in nanoscaled system!
V Is a non-extensive variable, Density Is a non-intensive variable
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Lo = Lon — N) + %H[}f\h’r. (1)

n = total number of atoms
N = number of atoms at the surface
E, cohesive energy per atom

Then the cohesive energy per mole (£,) ol the
nanosolid equals AE, /n. where A 1s the Avoga-
dro constant. Eq. (1) can be rewritten as

] .r

E, =E,|1 _;_ﬂ (2) With E, = AE,



It is known that both the cohesive energy and the melting
temperature are parameters to describe the bond strength of
materials, and it Is reported that the cohesive energy is linear
relation to the melting temperature for a material [1,2]. Since
the cohesive energy of a nanosolidis the function of N/n, Its
melting temperature should follow a relation similar to Eqg. (2),

J'Jlnlp — J'Jmh (] _ -,_)
|

T,p = melting temperature of the nanosized crystal
T, melting temperature of the bulk material

[1] J.H. Rose, J. Ferrante, J.R. Smith, Phys. Rev. Lett. 47 (1981) 675.
[2] J. Ferrante, J.H. Rose, J.R. Smith, Appl. Phys. Lett. 44 (1984) 53.



The calculated N/n for different nanosolids

Nanosolids N/n

Spherical nanosolids 4d/D

Disk-like nanosolids (4/3)d(1/h+2/]]
Nanowires (8/3)d/1
Nanofilms (4/3)d/h
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Melting temperature of Sn
nanoparticles as a function of
particle size. The solid line is the
calculated results by Eqg. (3),
where the melting temperature of
bulk Sn is 505 K
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Systems.

According to Pawlow[P. Pawlow : Z. Phys. Chem. Vol.65 (1909), p 1.] the
chemical potentials of pure element X in liquid and solid small particles with
radius r,

Liquid 7 Liquiid
2077V 1

Liquid .Particle __ , , Liquid .Bulk X
Hyx = Hy T
}4
20_503."{?? . I’; Solid
Solid .Particle __ , , Solid ,Bulk 4 X X
Hx = Hx .

v and v 7 are the molar volumes of pure element X in solid and liquid phases.

Tanaka



Equilibrium:

Liquid .Particle _ Solid . Particle
Hy = Hx
Liquid . Bulk Solid .Bullkk 2 Solid Solid Liquid Liquid
Hx — Hy - (oy Vi —oy V™)

e

G1bbs energy change of fusion of the element X

r Approximation:
o . AH
Liguid . Bulk Solid .Bulk __ _ m, X
Hx — Hy — AHFH._X ' (1 L Bulk ) ASn.x T
T m, X
m.X
[ 1 2 . - - .
—1_ Solid Solid ____Liquid 1, Liquid
=1 ' oy Vy Oy Vo)

Bulk
Zn,X r AHH:.X
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Fig.2. Change in melting point of pure Au with radius of a particle.

Experimental Value:
[32] C.J. Coombes : J. Phys. F Vol.2 (1972), p.441.

[33] J.R. Sambles : Proc. Roy. Soc. Lond. A. Vol.324 (1971), p.339.
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Binary Alloy Phase Diagrams of Small Particle Systems
consisting of Pure Solid Phases and Liquid Phase.

The phase diagrams can be evaluated by only the information on
the Gibbs energy in the bulk and the surface tension of liquid
phase, which can be obtained as functions of temperature. Example
. Cu-Bi Au-Si

A(} Total — A (} Builk 4 A(} Surface

AGP* = N AGY + N AGE + GF** + RT(N,InN, + N, InN,)
GE = N NyiLy + LN, =Ny )+ Ly(N, =Ny + L, (N, = N, )|
where AG 4° and AG g™ are Gibbs energies of pure liquid phases relative to those of pure solid
L = interaction parameter
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Example

Cu Geow= —48.7—(—142.53101)- T+31.380005- T+ (1.0—In T)
Geow=—8044.1 —(—110.40401)- T+24.852997- T (1.0—In T)
—0.0037865 T /2 —(—138909)/2/T

y 1 LS T L . 1 S
._‘n (_TCu - (_TCu (-TCu

Pb Gyt = —7347.8—(—133.83501)- T+36.112106- T+ (1.0—In T)
—(—0.0097362)- T2/2—(—279073)/2/T—3.2384 X 10 ®-T°/6
Gp,>= —7608.7—(—75.81465)- T+24221176-T+(1.0—In T)
—0.0087111-77%/2
A Gy " =Gpy— Gpy>

G =N N {Lo+Li(Na—Ng)+ Lo(Na—Ng)* + L3s(Na—Ng)’} / T-mol™

Cu-Pb [43] Lo=27190.2—4.21329-T
L,=22292—0.53584-7
L,=—7029.2+6.48832-T

L=—7397.6+5.07992-T
D Tanaka



A(}Tamf _ AG:BHH: _l_A(}S-‘”ﬁfm

20°7" 2(1\@5“51/";15 +N,o V;)

r r
R.A. Swalin : Thermodynamics of Solids, John Wiley, New York (1962).

A C]: Surface

3 L
C»O'X

oT

A

(r-T

O-;' — 1'250-;.mp + Xan) (X = A or B)

Correction factor because surface tension of solid at T, Is 25 larger
than surface tension of liquid

Molar volume of the liquid alloy: V" =N,V + NV,

Vi
) I»'S — X
Molar volume of the solid  x (1 N Of-x)

where ox=(Vxm — I”X__ms)/ V. . which is the ratio of the volume change of solid due Lfthe fusion.
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A

Surface tension o x / Nm™' of pure liquid components [47] % /Nm™' T
6.
Cu 0 ca”=1.303—0.00023 - (T—1356.15) —0.00023
Pb 0 pp-=0.458—0.00013 - (T—600.55) —0.00013
Bi 0 5i-=0.378—0.00007 (T—544.1) —0.00007
Au 0 aw-=1.169—0.00025-(T—1336.15) —0.00025
Si 0 si =0.865—0.00013-(T—1687.15) —0.00013
Molar volume / m’mol™ of pure liquid components [47]
Cu Ved:=7.94%10 %+ {1.0+0.0001 « (7—1356.15)}
Pb Vepm=19.42x10 °-{1.0+0.000124 - (T—600.5
Bi Vai-=20.80X10 °+ {1.0+0.000117-(7—544.1)}
Au Vamr=11.3X10 °- {1.0+0.000069 (T— 1336.15)}
Si Veir=11.1X10 °-{1.0+0.00014+(T— 1687.15)}
i L 1 . C —y7. L_1 Sy S
0 X.m.p. / Nm [47] TX._m.p. /K [47] ax=Vxm "X,m )T xm [48]
Cu 1.303 1356.15 0.0396
Pb 0.458 600.55 0.0381
Bi 0.378 544.1 —0.0387
Au 1.169 1336.15 0.055
Si 0.865 1687.15 —0.095
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Fig.4. Activities of components in bulk and surface tension of liquid alloys.
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Solid solubility limit in alloying nanoparticles
Start with Gibbs free energy: G=U—TS+PV =F+PV

Note that PV is usually much less than U for condensed matter:
G=F

We can write the Gibbs free energy of mixing for two phases with
the same structure:
G =xyGu+ XgGp + laptatp — TA 'qmir.ing

Here I, denotes the Interaction energy between the two components
(this is the same form as the non-regular solution model)

Namotechnology 1T (2006) 42574262

Solid solubility limit in alloying
nanoparticles

G Ouyang. X Tan, C X Wang and G W Yang



Solid solubility limit in alloying nanoparticles
Accordingly, we obtain the Gibbs free energies of o and f
phase sohid selutions of components A and B with two different
structures in the system as follows:
G = x4Ga+ xp(Gp + AGR) + f:H.'nﬁ.‘-B - lr1L"'l~’-'7'v||||'u-'.1lu.r
(5)
GF = xu (Ga + AGL) + xpGp + f:H'll..".'l.'rB — T ASpiing
(6)
where AG; (i = A, B) and 'F.i.H (i =wa. ) denote the Gibbs
free energy of the structural transformation of the single

component (e.g. from the o to the f phase) and the interaction
energy between two phases.

For the sing_le compnnents the Gibbs free energy for melting_ can be
written as:

G A= '”m.—". “"r.ﬁ._j — Tsm.-'\. {{"!r.-‘x]
f;ﬂ = lL"le:l “.'FH.} - TSmH I-r":.'lrl:I )

Here the melting enthalpy and entropy are considered to be
functions of diameter!



Solid solubility limit in alloying nanoparticles

Hod)= Han (1 — 1/ (d/fdy — 1))

. El.‘;u'lh I
X exp (— W — ) ()
iR didy — 1

Sm[ﬂr} = L"“ImlJ [I - ]-"II [ff.-"f'dﬂ - IJ:' ( H”

where H and S, are the bulk melting enthalpy and entropy,
R is the ideal gas constant and dy is the critical diameter of
nanoparticles. Note that there is an assumption that almost
all atoms are situated on the surface of nanoparticles, and
the surface of the solid is the same as that of the liguid,

Size-dependent interaction energy and values for the structural
transformation are also discussed. This can be inserted into the Gibbs free
energy for the « and [ phases, and the phase diagram determined from the

common tangent.
From this it is determined that the solid solubility
increases with decreasing diameter, with a
threshold around 20 nm.



Solid solubility limit in alloying nanoparticles

Pb-Sn at 383 K, for bulk (a)
and 20 nm particles (b)
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Large Melting-Point Hysteresis of Ge Nanocrystals Embedded in SiO2
Q. Xu, I. D. Sharp, C.W. Yuan, D. O.Yi, C.Y. Liao, A. M. Glaeser, A. M. Minor, J.W.
Beeman, M. C. Ridgway, P. Kluth, J.W. Ager Ill, D. C. Chrzan, and E. E. Haller

PHYSICAL REVIEW LETTERS, 97, 155701, Oct. 2006
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Fig. 7. Size-dependent melting of CoO layers on CGO with a = 470°Cnm.
Z delineates the thickest part of the CoO lens between two spherical powder

particles.
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Layer Thickness Z [nm]

Fig. 6. a) Dark field TEM and b) bright field TEM of an amorphous grain
boundary phase in CeysGdy20, ¢ doped with 1 mol-% CoO sintered at 900°C
for 10 min. ¢) HRTEM image of 5 mol-% CoO doped CGO equilibrated at
Tsinter = 1400 °C for 2 h. The grain boundary thickness is less than 0.5 nm.

Gauckler et al. Adv. Mat. 2001,13 1081



Nanoparticles are often polymorphs of bulk matenial
- with different physical and chemical properties

Lattice Constant for Pt as a function

of cluster size
Klimenkow et al, Surf. Sci. 391 (1997) 27-36
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Inhomogeneous State of Nanoparticles
Crystal lattice Segregation

*

Aala=0,k~ I, =0;.A,

0. =950, 1,0, = 3.5,As = 3nm

Kk volume compressibility coefficient
| radiusof the particle
y surface energy




Inhomogeneous State of Nanoparticles

52 (G-G))
KT

r, =0.a.

Kk volume compressibility coefficient

| radius of the particle

y surface energy

0,= (a;/a—1) a s the effective radius of
a foreign atom.

G shear modulus
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Free energy of two-component nanoparticles

7_/5 ;.S Yo
I:vl.f1+|:v2.f2_|_ \1/1+ 1\; : <|:v.fo_i_ V'I """ (15)

1
S1
4:1

Fig. 2. Schematic transformation of two-element nanoparticle with
initially hamogeneous structure into the heterogeneous phase.

f, and f, =1-f, are the concentrations of component A in nanoparticles
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va ,7282<va ,7/181
2112 V2 10 V1

Example: m —t Zirconia; TiO2: Anatase - Rutil

Tt (}/252 7/181 W A 1s the heat of phase transition per
. — unit volume
A \ V2 Vl ) T, phase transition temperature

AT

With decreasing nanoparticle size the phase with lower surface energy
(packed more tightly) become energetically favoured. For example, in the case
of the common body-centered cubic (BCC) and face-centered cubic (FCC)
crystal lattice the latter may become energetically more favourable



Stable structures of TiO, as a function of

cluster size
Ranade et al Proc. Nat, Acad. Sci. 99 (2002) 6476
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Materials properties are not constant

Calorimetric measurements
show that the energy
dependence of supported Pb
particles vary much more
quickly than predicted by the
Gibbs-Thompson
relationship.“This shows that
the surface energy increases
substantially as the radius
decreases below 3 nm.” C.T
Campbell et. al. Science 298
(2002) 811-814
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Equilibrium Thermodynamics

A Different Approach to Nanothermodynamics

Terrell L. Hill, Nano Letters Vol 1 (2001) 273-275

“In contrast to macrothermodynamics, the thermodynamics of
a small system will usually be different in different
environments.”



Motivation

We have so far considered size effects arising
from surface curvature

This treatment is a first approximation — more
rigorous treatments also exist

Other types of size effects have not been
considered

Here we will survey current studies (theoretical
and experimental) of nanoscale thermodynamics

Note that this field is fairly new — still many
different theories and unclear effects!



Nanothermodynamics - Hill

The study of small systems at equilibrium requires
modification of ordinary thermodynamics

This was first studied in 1961-64 by T.L. Hill

Definitions of state functions must be modified by
correction terms, accounting for surface effects, edge
effects, translation, rotation, etc.

This leads to some surprising results, in particular that
thermodynamic properties depend on the environment —
that is, which variables are allowed to be independent

Entropy, for example, depends on how “open™ a small
system is



Ensembles of Small Systems

Nanothermodynamics is developed for ensembles of
small systems — that is, macroscopic samples
containing very many identical small components

This allows for the connection of macroscopic
variables and functions to small systems.

In other words, measurements made on larger samples
can be connected to the properties of individual small
systems

The equations of nanothermodynamics connect the
macroscopic properties of an ensemble to the
individual small systems that it contains.



A Different Approach to
Nanothermodynamics

Terrell L. Hill* NANOLETTERS 2001 Vol. 1, No. 5 273-275

Department af Chemistry and Biochemistry, Universitv of California at Santa Cruz,
Santa Cruz, California 95064

Thermodynamics for macroscopic systems:
dU =TdS — pdV

dU =TdS—pdV + > #dN;,  Gibbs

For example, if the system is a small one-component spherical aggregate that has
a nonnegligible surface free energy term proportional to N23, above equation is
no longer applicable.




Generalization of Thermodynamics

Consider first the internal energy of a macroscopic system. For
a multicomponent system without external fields, an arbitrary
change can be written as: .

dU =TdS — PdV + > udn,

k=1

For an ensemble of small systems, the change in internal energy
for the entire system is the sum of the small systems.

dU, =TdS, — PdV,+ > u.dn, .

k=l

U, =NU
5, =NS
V. =NV
n, = Ny

where t indicates “total for the system” and N is the number of
systems in the ensemble.



Generalization of Thermodynamics

However when these systems are sufficiently small,
correction terms must be introduced.

To account for the correction terms in the internal energy (and
other state functions), a new term is introduced:

dU, =TdS, — PdV, +>_un, , + EdN
-1

10
EE{{'L"
_ON

! .
S5 Vg

This accounts for the fact that, if V,, S; and n,, are held constant,
there is a change in U, when the change in VV and n, of
individual systems becomes important (in other words, as N
becomes large).



Generalization of Thermodynamics

This new parameter E is called the subdivision potential, and
gives a measure of how the energy of the ensemble changes
as the component systems are divided.

In other words, it measures how the internal energy changes as
the average system size (within an ensemble) changes (for
constant fotal volume and number of moles)



£ 1S a kind of system (rafhpr than molecule ) chemical pgtv._n_tia_!,
called the “sub- leISIOﬂ potential.”

If the systems of the ensemble are macroscopic and are subdivided
In order to increase N in eq 4 (e.g., in an extreme case, each
system is cut in half to double N ), this will not have a noticeable
effect on E, if S, V,, and Ni, are all held constant. That is, surface
effects, edge effects, system rotation and translation, etc., are all
negligible for macroscopic systems, and hence E is essentially
zero: the term E d N does not contribute appreciably to the
equation. But the effects just mentioned are not negligible if an
ensemble of small systems is subdivided to increase N in eq 4.
This Is because such an increase in N implies a decrease in V and
N: (V,, and N, are held constant): unlike macroscopic systems, size
effects are significant in small systems.




Effect of Environment

In contrast to macrothermodynamics, the thermodynamic
properties of a nanoscale system will depend on the environment
— that is, which variables are chosen as independent

As an example: Consider an incompressible aggregate of N
spherical molecules in a temperature bath at T. The aggregate
will have a certain entropy S associated with translation, rotation
and vibration of molecules within it.

In contrast, consider that the bath contains molecules at a certain

potential u which can go on and off of the aggregate
(adsorb/desorb). Here 11 and T are environmental variables (while
N is not). At equilibrium there will be a mean value of N. If 1 is
chosen to give the same N as the above case, the entropy will be |
larger in this case because of fluctuations in N. \

In other words, entropy depends on which variables are
independently controlled.




= f(translation,
rotation,
vibration)

if 22 50 that N = N in the T,N case,

Sinthe u,T case is lar ger {nddlflnnnl fluc
not inert
T,
. : ®
C‘.
o
= @
N " o
®
® .

Variables:N,P, T
N: 100 — 1000

P can be ignored (incompressibility.

Variables:u,P, T

-
N~



Variables n, P, T

This is a one-component system at T and P where the number
of moles in each system is independently fixed. An example
would be a colloidal particle of n moles in an inert solvent.

Here the chemical potential of each system (particle) is
determined by the number of moles n. The extra term then

accounts for the way the chemical potential changes with size
(e.qg. curvature) for a small system.

dU, =TdS,— PdV,+ > i, +EdIN
i=l

E=(u—in



Variables u, P, T

This is an example of a completely “open” one-component
system (all environmental variables are intensive). An
example would be a colloidal particle in a solvent (at P and T)
where the solvent contains molecules at 1 which can add to

the particle.

It should be noted that in a macroscopic system these three
variables cannot be independent. However small systems
have an extra “degree of freedom” introduced by the extra
term in the energy equation.



Variables u, P, T

In this case the extra term has a more complex form
determined by size effects on both pressure and chemical
potential.

dU, =TdS, — PdV,+ > un,  +EdN
=1
E=U-I5+PV — m

It is important to note that entropy will also depend on size for
a small system, because fluctuations in variables can be
significant.



