Triangles

The perpendicular bisectors of the

 sides- The three perpendicular bisectors of the sides of a triangle meet at a point (O)
- The point O is the center of the circumscribed circle of the triangle.

The theorem of Thales

If we connect the two end-points (A, B) of the diameter of a circle with any other point of the circle, then we get a right triangle.

\Downarrow
The midpoint of the hypotenuse is center of the circumscribed circle of the right triangle.

The angle bisectors of a triangle

- The angle bisectors of a triangle intersect each other at one point.
- This point (O) is the center of the inscribed circle of the triangle.

The altitudes (heights) of a triangle

- An altitude (or height) of a triangle is a segment which passes through a vertex of the triangle and is perpendicular to the side opposite this vertex.
- Orthocenter of the triangle: H

Midlines of a triangle

- The segment connecting the midpoint of two sides of a triangle is a midline.
- Each midline is parallel and half as long as to the third side of the triangle.

Medians of a triangle

- A median of a triangle is a segment from a vertex of the triangle to the midpoint of the opposite side.
- The medians of a triangle are concurrent. The common point is the centroid, which divides the medians in the ratio 2:1.

Congruent triangles

- They will have exactly the same three sides and exactly the same three angles.
- The equal sides and angles may not be in the same position.
- There are four ways to find if two triangles are congruent:

1. SSS (side, side, side)
2. SAS (side, angle, side)
3. ASA (angle, side, angle)
4. SSA (side, side, angle opposite the longer side)

Similar triangles

- Triangles are similar if they have the same shape, but not necessarily the same size.
- In similar triangles, the sides facing the equal angles are always in the same ratio.
- Triangles are similar if:

1. AAA (angle, angle, angle) All three pairs of corresponding angles are the same.
2. SSS in same proportion (side, side, side) All three pairs of corresponding sides are in the same proportion
3. SAS (side, angle, side)

Two pairs of sides in the same proportion and the included angle equal.
4. SSA (side, side, angle)

Two pairs of sides in the same proportion and the angles opposite the longer side are the same.

Right Triangle Altitude Theorem

- The altitude drawn from the vertex of the right angle of a right triangle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse.

Right Triangle Leg Theorem

$$
\begin{aligned}
& b=\sqrt{c_{1} \cdot c} \\
& a=\sqrt{c_{2} \cdot c}
\end{aligned}
$$

- In right triangles, leg is the geometrical mean of the hypotenuse and the orthogonal projection of the leg on the hypotenuse.

Similar right triangles

- Two right triangles are similar if one pair of acute angles are equal.
\Downarrow
- The acute angle of a right triangle is determined by the ratio of two sides.

The trigonomic functions of an acute angle: sine, cosine, tangent

Connections between the trigonomic functions of an acute angle

- $\sin \alpha=\cos \left(90^{\circ}-\alpha\right)$
- $\cos \alpha=\sin \left(90^{\circ}-\alpha\right)$
- $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}$
- $\sin ^{2} \alpha+\cos ^{2} \alpha=1$

The exact values of trigonomic functions of some acute angles

	\sin	\cos	\tan
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

