On \(f \)-injective modules

By

MAHER ZAYED

Abstract. In this paper, the notions of \(f \)-injective and \(f^* \)-injective modules are introduced. Elementary properties of these modules are given. For instance, a ring \(R \) is coherent if any ultraproduct of \(f \)-injective modules is absolutely pure. We prove that the class \(\sum^{*} \) of \(f^* \)-injective modules is closed under ultraproducts. On the other hand, \(\sum^{*} \) is not axiomatisable. For coherent rings \(R \), \(\sum^{*} \) is axiomatisable if every \(\chi_0 \)-injective module is \(f^* \)-injective. Further, it is shown that the class \(\sum \) of \(f \)-injective modules is axiomatisable if \(R \) is coherent and every \(\chi_0 \)-injective module is \(f \)-injective. Finally, an \(f \)-injective module \(H \), such that every module embeds in an ultrapower of \(H \), is given.

1. Introduction. In [3], Eklof and Sabbagh introduced the notion of \(\alpha \)-injective module. For a cardinal \(\alpha \geq 2 \), a module \(X \) over a ring \(R \) is \(\alpha \)-injective if for every ideal \(I \) having a generating subset of less than \(\alpha \) elements, any homomorphism of \(I \) into \(X \) can be extended to a homomorphism of \(R \) into \(X \). In this paper, the notions of \(f \)-injective and \(f^* \)-injective modules are introduced. An \(R \)-module \(X \) is said to be \(f \)-injective (resp. \(f^* \)-injective) if given any monomorphism \(F \to Y \), where \(F \) is a finitely generated (resp. finitely presented) module, any homomorphism \(F \to X \) can be extended to a homomorphism \(Y \to X \).

Note that every \(f \)-injective is \(\chi_0 \)-injective and the converse is not generally true (Remark 3.4).

Elementary properties of these modules are given. For instance, a ring \(R \) is coherent if and only if any ultraproduct of \(f \)-injective modules is absolutely pure. We prove that the class \(\sum^{*} \) of \(f^* \)-injective modules is closed under ultraproducts. On the other hand, \(\sum^{*} \) is not axiomatisable. For coherent rings \(R \), \(\sum^{*} \) is axiomatisable if and only if every \(\chi_0 \)-injective module is \(f^* \)-injective. Further, it is shown that the class \(\sum \) of \(f \)-injective modules is axiomatisable if and only if \(R \) is coherent and every \(\chi_0 \)-injective module is \(f \)-injective. Finally, an \(f \)-injective module \(H \), such that every module embeds in an ultrapower of \(H \), is given.

2. Notation and preliminary results. Throughout this paper, \(R \) is an associative ring with identity and all modules are left unitary \(R \)-modules. The class of finitely generated \(R \)-modules is denoted by \(f \). The subclass of \(f \) whose objects are the finitely presented modules in \(f \) is denoted by \(f^* \). An \(R \)-module \(X \) is said to be \(f \)-injective (resp. \(f^* \)-injective) if for every monomorphism \(f : F \to Y \), \(F \in f \) (resp. \(F \in f^* \)), any homomorphism \(g : F \to X \) can be extended to a homomorphism \(h : Y \to X \); that is \(g = h \circ f \).

Mathematics Subject Classification (2000): 16D70, 16D80, 12L10, 03C60.
Proposition 2.1. (a) A direct product $\prod_{\alpha \in A} X_\alpha$ of modules is f-injective if and only if each X_α is f-injective.

(b) If $X_0 \subset X_1 \subset \ldots \subset X_\beta \subset \ldots$, $\beta < \alpha$ is a chain of f-injective modules, where α is an ordinal, then the union of the chain is f-injective.

(c) Any direct sum of f-injective modules is f-injective.

(d) Every module has a maximal f-injective submodule.

(e) Every finitely generated (resp. finitely presented) f-injective (resp. f^*-injective) module is injective.

Proof. Easy.

Corollary 2.2. A ring R is left noetherian if and only if every f-injective R-module is injective.

Proof. The ‘only if’ part follows from Baer’s criterion of injectivity. The ‘if’ part follows from Proposition 2.1(c) and [1, Prop. 18.13].

Corollary 2.3. A ring R is semi-simple artinian if and only if every R-module is f-injective.

Proof. Apply Proposition 2.1(e) and [8, Theorem].

3. Ultraproducts of f^*-injective modules. Let I be a nonempty set, $(X_i)_{i \in I}$ be a family of R-modules and u be an ultrafilter on I. The ultraproduct of this family with respect to u is denoted by $\Pi_i \in I X_i$. If $X_i = X$ for all $i \in I$, the ultraproduct is denoted by X^I/u and is called the ultrapower of X. For the basic concepts of model theory and the main properties of ultraproducts of algebraic structures we refer to [2] and [6]. Let X and Y be two modules over R. X and Y are called elementarily equivalent (notation: $X \equiv Y$) if X and Y satisfy the same first order sentences in the language of modules over R. A class K of R-modules is called axiomatisable if there exists a family of first order sentences in the language of modules over R such that K consists exactly of the modules satisfying these first order sentences. Let Σ (resp. Σ^*) be the class of all f-injective (resp. f^*-injective) R-modules. If Γ denotes the class of injective R-modules, then $\Gamma \subseteq \Sigma \subseteq \Sigma^*$. Note that if R is left coherent, then every f^*-injective R-module is χ_0-injective.

Proposition 3.1. Σ^* is closed under ultraproducts.

Proof. Let $(X_i)_{i \in I}$ be a family of f^*-injective modules and u be a non-principal ultrafilter on I. Let $F \in f^*$ and consider the following diagram:

$$
\begin{array}{ccc}
0 & \longrightarrow & F \\
& & \downarrow \Phi \\
& & \Pi_i X_i
\end{array}
$$

Since F is finitely presented, so there exist a set $\Omega \in u$ and a homomorphism $\lambda : F \to \Pi_i X_i$, such that $g = \Phi \circ \lambda$, where $\Phi : \Pi_i X_i \to \Pi_i X_i$ is the canonical homomorphism [5].

Note that $\Pi_i X_i \in \Sigma^*$, so there exists $h : Y \to \Pi_i X_i$ such that $h \circ f = \lambda$.

Now, if $\gamma = \Phi \circ h : Y \to \Pi_i X_i$, then $\gamma \circ f = \Phi \circ h \circ f = \Phi \circ \lambda = g$. This means that $\Pi_i X_i$ belongs to Σ^*.

Corollary 3.2. Any ultraproduct of f-injective (resp. injective) R-modules is f^*-injective.

Corollary 3.3. \sum^* is elementarily closed if and only if \sum^0 is closed under elementary descent.

Proof. The ‘only if’ part is obvious. The ‘if’ part follows from Frayne’s Lemma [2, Ch. 8, Lemma 1.1] and Proposition 3.1.

Remark 3.4. Let V be an infinite dimensional vector space over a division ring D and $R = \text{End}(V_D)$. The ring R is von Neumann regular. Further R is not left self-injective. In fact R has a primitive idempotent e such that $M = Re$ is not injective [1, Ex. 18.4].

Observe that M is χ_0-injective and by Proposition 2.1(e), $M \not\in \sum^*$. Let $E(M)$ be the pure-injective envelope of M. Since R is regular, $E(M)$ is injective and so $E(M) \in \sum^*$. Note that $M \equiv E(M)$ [9]. Hence, in general, the class \sum^* is not elementarily closed. It follows from [2, Ch. 7. Theorem 3.4], that \sum^* is not an axiomatisable class.

We do not know for what rings the f^*-injective modules form an axiomatisable class. However, for coherent rings, one easily obtains the following result.

Proposition 3.5. Let R be a left coherent ring and \sum^0 be the class of all χ_0-injective R-modules. Then \sum^* is axiomatisable if and only if $\sum^0 = \sum^*$.

Proof. Suppose that \sum^* is axiomatisable and $X \in \sum^0$. By Lemma 3.17 of [3], X is an elementary submodule of an injective module I.

Since $I \in \sum^*$, then $X \in \sum^*$. The converse results from [3, Theorem 3.16].

Corollary 3.6. For a regular ring R, \sum^* is axiomatisable if and only if every R-module is f^*-injective.

4. Ultraproducts of f-injective modules. In this section, we show that, if \sum is axiomatisable, then R is left coherent. It follows from the preceding remark that the converse is not generally true. However, a ‘converse’ of this result will be proved.

Proposition 4.1. The following assertions are equivalent:

(i) \sum is closed under ultraproducts.
(ii) \sum is closed under ultrapowers.

Proof. The implication (i) \Rightarrow (ii) is obvious. To show that (ii) \Rightarrow (i), let $(X_i)_{i \in I}$ be a family of f-injective modules and u be a non-principal ultrafilter over I. By [3, Remark p. 261], the R-module $\Pi_u X_i$ is a direct summand of an ultra-power of the direct product of the family $(X_i)_{i \in I}$. The result follows from Proposition 2.1.

We recall that an R-module M is called absolutely pure (or f-p-injective) if each short exact sequence $0 \rightarrow M \rightarrow A \rightarrow B \rightarrow 0$ of R-modules is pure-exact. It is an equivalent assertion that every R-linear map $f : U \rightarrow M$, where U is a finitely generated submodule of a finitely generated free module F, admits an extension to F. Of course, every f-injective R-module is absolutely pure.
Proposition 4.2. The following conditions are equivalent:

(i) R is left coherent.
(ii) Any ultraprocess of f-injective R-modules is absolutely pure.
(iii) Any ultrapower of f-injective R-module is absolutely pure.

Proof. (i) \Rightarrow (ii) follows from [9, Theorem 2], and (ii) \Rightarrow (iii) is obvious. So, it remains to show (iii) \Rightarrow (i). Let $(X_i)_{i \in I}$ be a family of injective R-modules and u be a non-principal ultrafilter on I. The direct product $X = \Pi_{i \in I} X_i$ is f-injective. Under the hypothesis (iii), any ultrapower of X is absolutely pure. Note that any direct summand of an absolutely pure module is absolutely pure [7]. So, the ultraproduct $\Pi_u X_i$ (which is a summand of an ultrapower of X) is absolutely pure. Now, R is left coherent follows from Theorem 2 of [9].

Corollary 4.3. We consider the following assertions:

(i) Σ is axiomatisable.
(ii) Σ is elementarily closed.
(iii) Σ is closed under ultraproducts.
(iv) R is left coherent.

Then (i) \iff (ii) \Rightarrow (iii) \Rightarrow (iv).

The proof of Proposition 3.5 can be easily modified to yield the following:

Proposition 4.4. For a ring R, the class Σ is axiomatisable if and only if R is left coherent and $\Sigma_0 = \Sigma$.

Corollary 4.5. For a regular ring R, Σ is axiomatisable if and only if R is semisimple artinian.

Proposition 4.6. For any ring R, there is an f-injective R-module H, such that every module embeds in an ultrapower of H.

Proof. Let $H = \oplus \{ I(M) : M \text{ is finitely generated} \}$, where $I(M)$ is the injective envelope of M. Let X be any module and $\{ B_j : j \in J \}$ be the set of all finitely generated submodules of X. For each $j \in J$, B_j is embedded in $I(B_j)$. So, there exists an embedding $f_j : B_j \rightarrow H$. For each $j \in J$. By [4, Theorem 6.1], there is an ultrafilter u on J and an embedding of X into the ultrapower H^J/u of H, observe that H is f-injective.

Acknowledgement. The author would like to thank the referee for his useful suggestions.

References

On f-injective modules

Anschrift des Autors:
Maher Zayed
Department of Mathematics
Faculty of Science, University of Banha
Banha 13518, Egypt

Eingegangen am 12. 7. 2000