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Abstract: Sub-harmonic periodic solutions of even order ( 
1

2
,
1

4
 ) to a weakly non-

linear second order differential equations which governed the motion of a micro-

electro mechanical system (MEMS) (Bandpass Filter) are investigated analytically. 

The method of multiple scales is used to determine the modulation equations in the 

amplitude and the phase, steady state solutions. The frequency-response equation 

and stability analysis of the steady state solutions are obtained. Numerical study of 

the frequency-response equations and stability equations are given for different 

values of the parameters. Results are plotted in group of Figures, on which solid 

(dashed) curves are stable (unstable) solutions. Finally discussion and conclusion 

are given. 
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1 Introduction 

 
The advent of micro-bifurcation technologies in the last couple of decades has led to the birth of an 

exciting and revolutionary field called micro-dynamical systems. Micro systems are literally very 

small systems or systems made of very small components. For micro-electro-mechanical 

systems(MEMS) micro-establishes a dimensional scale electro-suggests either electricity or electronic 

(or both) and mechanical suggests moving parts of some kind[1].  

 

Lid and Wang[2] studied structural dynamics of microsystems, current state of research and future 

directions. Mathematical study of this type of dynamical systems leads to a non-linear second order 

differential equations or a set of coupled non-linear second order differential equations. Periodic 

solutions of this type of differential equations (the response of its dynamical systems) is the object of 

many works. Elnaggar et al.[3- 6] studied different kinds of periodic solutions (harmonic, sub-

harmonic and super-harmonic solutions) of a weakly non-linear second order differential equation. L-

Cveticanin et al.[7] studied the periodic solution of the generalized Rayleigh equation. Younis and 

Nayfeh [8] used the method of multiple scales to study the response of an electrostatically actuated 

resonator to resonance excitation. Abd El-Rahman and Nayfeh [9, 10] studied a super-harmonic 

resonance excitation of order one-half. Zhang and Meng [11] analyzed the nonlinear dynamics of the 

electrostatically actuated resonant sensors under parametric excitation. Elnaggar et al.[12] studied 

harmonic and sub-harmonic resonance of micro-electro mechanical system(MEMS) subjected to a 

weakly non-linear parametric and external excitation. Zavodney and Nayfeh [13] studied the response 

of a single-degree-of-freedom system with quadratic and cubic non-linearities to a fundamental 

parametric resonance. Elnaggar and Alhanadwah [14] studied parametric excitation of subharmonic 

oscillations. Elnaggar and El-Bassiouny [15, 16] studied the response of self-excited two-degree and 

three-degree-of-freedom systems to multi-frequency excitations. El-Dib [17] used the method of 
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multiple scales to determine a third-order solution for a cubic non-linear Mathieu equation. El-

Bassiouny and Eissa [18] investigated analytical and numerical solutions of single-degree-of-freedom 

with quadratic and cubic nonlinearities to a harmonic resonance. El-Dib [19] analyzed a theoretical 

analysis of the parametric harmonic response of two resonant modes based on a cubic non-linear 

system. El-Bassiouny et al.[20] investigated two-to-one internal resonances in nonlinear two-degree-

of-freedom system with parametric and external excitations. Rhoads et al.[21] studied the parametric 

resonance of micro-electro mechanical system, which represented mathematically by a weakly non-

linear second order differential equation in which the non-linearity is modeled by a cubic function of 

displacement. El-Bassiouny [22] studied an approach for implementing an active nonlinear vibration 

absorber. The strategy exploits the saturation phenomenon that is exhibited by multi-degree-of-

freedom systems with cubic nonlinearities possessing one-to-one internal resonance. The proposed 

technique consists of introducing a second-order controller and coupling it to the plant through a 

sensor and an actuator where both the feedback and control signals are cubic. El-Bassiouny [23] 

studied the dynamical stability and complicated motions of a vessel in regular sea are investigated 

when the frequancy in the pitch is nearly twice the frequency in the roll. El-Bassiouny[24] investigated 

vibration and chaos control of nonlinear torsional vibrating systems. Zhang et al. [25] studied the 

dynamics of nonlinear coupled electrostatic micro mechanical resonators under two frequency 

parametric and external excitations. Elnaggar et al.[26] used the method of multiple scales to 

investigated the saddle node bifurcation control for an odd non-linearity problem. Elnaggar et al.[27] 

analyzed the perturbation analysis of an electrostatic Micro-Electro-Mechanical System(MEMS) 

subjected to external and non-linear parametric excitations. Harmonic, sub-harmonic and super-

harmonic resonance of weakly non-linear dynamical system subjected to external excitation, 

parametric excitation or both are investigated by Elnaggar et al.[28]. Kacem et al.[29- 31] studied 

respectively nonlinear multi-physics models including both mechanical and electrostatic nonlinearities 

and the fringing field effect. Jeffrey F. Rhoads et al.[32] studied the tunable micro electro mechanical 

filters that exploit parametric resonance in which the elastic restoring force is modeled by a cubic 

function. A more comprehensive review up to 2010 about the work on the non-linear dynamics of 

micro resonators is presented in literature. 

 

In this paper an analytical study (perturbation analysis) for a weakly non-linear second order 

differential equation, which governed the motion of micro electro-mechanical 

system(MEMS)(Bandpass Filter)[32] in which the elastic restoring force is modeled by an odd non-

linear function. The object of the study is to determine different types of periodic solutions sub-

harmonic of order )
4

1
,

2

1
(  and its stability. Perturbation method (multiple scales method) [33-36] is 

used to determine, the modulation equations in the amplitude and the phase. Steady-state solutions, the 

frequency-response equations and the stability analysis are given. Finally numerical study for 

frequency-response and the stability equations are carried. The results are plotted in group of Figures 

in which solid(dashed) lines means stable(unstable) solutions. Discussion and conclusions are given.  

 

 

2 Formulation of the problem and perturbation analysis 
 

The oscillation motion the Micro-Electro Mechanical Systems (MEMS)(Bandpass Filter)[32], is 

governed by the following weakly non-linear second order differential equation  

 

 
0 = )(cos)()(2 3

21
7

7
5

5
3

31
2   uHuHuFuFuFuFuuu o  … (1) 

 

Equation (1) represent Modified Duffing’s equation subjected to weakly non-linear parametric 

excitation, where the dots indicate differentiation with respect to t,     is a small parameter 1= ,     is 

the coefficient of viscous damping,   o  is the linear natural frequency,     is frequency of the 
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external excitation, 531 ,, FFF  and  7F  are the coefficients of the non-linear terms, 1H  and 2H  are the 

coefficients of linear and nonlinear parametric excitations respectively. To determine a first-order 

uniform expansion of the solutions of Eq.(1), one can use the method of multiple scales [33-36]. Let 

  

 tTOTTuTTutu n
nooo   =     ),(),(),(=);( 2

111   … (2) 

 

where   =  tTo  is the first scale associated with changes occurring at the frequencies   o  and    , and 

  =  1 tT   is a slow scale associated with modulations in the amplitude.  

 ......2 = ........, = 1

2

2

2

1  DDD
dt

d
DD

dt

d
ooo   … (3) 

where   =
n

n
T

D



. Substituting Eqs.(2) and (3) into Eq.(1) and equating terms with the same power of 

on both sides, we obtain a system of linear partial differential equations 

  0 = :(1) 22
oooo uuDO    … (4)  
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 … (5) 

 

The solution of Eq.(4) can be expressed by  

   o
T

o
i
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 

 )()( = ),( 111   … (6) 

where A  is the amplitude of the solution and is a function of 1T  and A  is the complex conjugate of A

, substitute Eq.(6)into Eq.(5), we get  
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 … (7) 

 

where .NST  denotes the terms does not produce secular terms and ..cc  denotes the complex conjugate. 

Any particular solution of Eq.(7) contains secular terms, which are generated by the first term on the 

right-hand side of Eq.(7). Moreover, it may contains small-divisor terms depending on the resonance 

condition. Eq.(7) contains two conditions to obtain periodic solutions )( on ; 2,4=n . i.e their exist 

sub-harmonic periodic solutions of even order (
4

1
,

2

1
).  

 

 

3 Sub-harmonic solution of order  o2(
2

1
  ) 

In this section, we study subharmonic solution of order 
2

1
. i.e periodic solutions with period equal two 

multiple of the period of the excitation term i.e ( o2 ). Introducing the detuning parameter   in 

Eq.(7) to convert the small divisor term into secular term. 

   oei 2=.   … (8) 

 

and write  

 oooooooo TTTTTTT  =,==)( 11   … (9) 

 

Using (9), the small-divisor term arising from )2( oexpi   in Eq.(7) can be transformed into a 

secular term. Then, eliminating the secular terms yield  
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0=)3(
2
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3510322
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2
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

   … (10) 

One can take  
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(
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  … (11) 

where a  and   are real. Inserting Eq.(11) into Eq.(10) and separate real and imaginary parts, we 

obtain  
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where Equations (12) and (13) represent the modulation equations in the amplitude and the phase.  

 

  2= 1 T   … (14) 

 

It is obvious that, Eqs.(12) and (13) have a trivial solution which corresponds to the trivial steady state 

solution. Non-trivial steady state solution corresponds to the non-trivial fixed points(Equilibrium 

points) of Eqs. (12) and (13). That is, they satisfy 0==  a , and are given by  
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where ooa ,  correspond to steady state solutions. Eliminating osin  and ocos  from Eqs.(15) and (16) 

yields the frequency-response equation  
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From(17), we get:  
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The first-order uniform expansion of the solution (first approximation) of Eq.(1) is given by  

 )()
2

1

2

1
(=  Otacosu    … (19) 

The analysis of the stability of the trivial solutions is equivalent to the analysis of the linear solutions 

of equation(10) by neglecting the non-linear terms we get  

 0=
2

1
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1
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To determine the stability of the trivial steady state solution, it is convenient to rewrite A  in the form  

 
)

1
(

2

1

11 ))()((=
Ti

eTibTBA


   … (21) 

 

where B and b are separates real and imaginary parts, we get  

                 0=1Bbb     … (22) 

                 0=2bBB     … (23) 

Eqs.(22)and(23) admit solution of the form 1),(),(
T

oebBbB


 , where ),( bB  are constants. The 

eigenvalues of the coefficient matrix of Eqs.(22) and (23) are 
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               .= 21o   … (24) 

  

where )
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1

2
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2
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oo 
  . Then, the trivial solution is stable 

if the real parts of both eigenvalues are less than or equal zero. To determine the stability of the non-

trivial steady state solutions given by Eqs.(15) and (16). Let  
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where 0a  and 0  correspond to a non-trivial steady state solutions and 1a  and 1  are perturbations 

which are assumed to be small compared with 0a  and 0 . Substituting (25) into equations (12) and 

(13) and linearizing the resulting equations, we obtain  
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The solution is stable if and only if the real part of each of the eigenvalues of the coefficient of the 

matrix are less than or equal to zero. 
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4 Sub-harmonic solution of order   o4(
4

1
 )  

In this section, we study subharmonic solution of order 
4

1
 i.e periodic solutions with period equal four 

multiple of the period of the excitation term i.e ( o4 ). Introducing the detuning parameter 1  in 

Eq.(7) to convert the small divisor term into secular term.  

 14=.   oei   … (29) 

 , and write  
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Eliminating the secular terms form the Eq.(9) yields  
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 like in the previous section into the Eq.(31) and separating 

real and imaginary parts, we obtain the following modulation equations: In Eq.(31), where a  and   

are real, separate real and imaginary parts, and obtain  
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where Eqs.(32)and (33) represent the modulations in the amplitude and the phase,  2= 11 T  for 

steady state solution, 0==a , in Eqs.(32)and(33) we obtain  
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where oa  and o  correspond to steady state solutions. Eliminating osin  and ocos  from Eqs.(34) and 

(35) yields the frequency-response equation  
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From (36), we get  

 
0

22
2

4

2
7

6
5

4
3

2
1

1

4
16

1
35404864

=







 HaFaFaFaF o

o

ooo

 … (37) 

The first-order uniform expansion of the solution (first approximation) of Eq.(1) is given by 
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Now, the analysis of the stability of the trivial solutions is equivalent to the analysis of the linear 

solutions of equation (10) by neglecting the non -linear terms we get  
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Eqs.(40)and(41) admit solution of the form 1
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eigenvalues of the coefficient matrix of Eqs.(40)and(41) are  
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To determine the stability of the non-trivial steady state solutions given by Eqs.(32) and (33), we use 

Eqs.(34) and (35). Let  
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Consequently, a solution is stable if and only if the real parts of both eigenvalues (46) are less than or 

equal to zero. 

 

  

5 Numerical results and discussions 

This section presents numerical results for sub-harmonic solutions of order 
2

1
(one-to-two) and 

4

1

(one-to-fourth) by solving the frequency response equations (18) and (37) and stability conditions 

(24), (28), (42) and (46) for different values of the parameter in the equations. The numerical results 

are plotted in a group of Figures (1-24), which represent the variation of the amplitude a  with the 

detuning parameter (  and 1 ) for given values of the other parameters in which solid (dashed) 

curves, represent stable (unstable) solutions. Figures (1-12) represent the frequency-response curves of 

the subharmonic solutions of order 
2

1
. In (Fig.1), we note that, the response amplitude has two 

branches which are bent to the right so that the upper branch has stable for large values and there exist 

a jump phenomena(a saddle node bifurcation) and the lower branch has unstable solution. For 

increasing the coefficient of the linear term 1F  respectively, we observe that the two branches are shift 
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to the right so that the regions of definition, stability and multivalued are decreased, (Fig.3). When 1F  

is decreased with negative values respectively, we note that two branches are shift to the left and the 

saddle node bifurcations are exist at the points 3.5)=5.5,=7.5,=(   . The zones of definition, 

stability and multi-valued are increased, (Fig.4). As the coefficient of the cubic term 3F  takes the 

values (0.9, 2, 3), we note that two branches are shift downwards and have decreased magnitudes 

respectively and there exist a jump phenomena ( a saddle node bifurcations) are exist at the points 

0.4)=0.9,=1.5,=(   . The regions of definition, stability and multivalued are decreased, Fig.5. 

For decreasing 3F  respectively, we observe that the upper branch shifts to the left and move to the 

upper and the lower branch shifts upwards. The two branches have increased magnitudes and there 

exist a saddle node bifurcations at the points 2.7)=3.5,=4.4,=(   . The regions of definition, 

stability and multivalued are increased, (Fig.6). For the coefficient of the quantic term 5F  increasing 

and decreasing respectively, we get the same variation as in Figures(5, 6) and Figs.(7,8). As the 

coefficient of the seventh nonlinear term 7F  takes the values (3, 5, 7), we note that the two branches 

are shift downward and have decreased magnitudes respectively. The saddle node bifurcation are exist 

at the points( 0.89)=1.11,=1.49,=(   ),(Fig.9). (Fig.19), represent the variation of 7F  for the 

same values with magnitudes values (-3, -5, -7) when 3=7 F , we deserve that the two branches are 

bent to the left. Also, the stability for the trivial solution and by examination of the eigenvalues 

Eq.(4.13) for nontrivial solution for the second case. For further decreasing 7F , of the two branches 

are shift downwards and have decreased magnitudes. When the coefficient of linear parametric 1H  is 

increased respectively, we note that the upper branch shift to the left and has increased magnitude 

respectively and there exist a saddle node bifurcations at the points ( 6.8=5.4,=4.3,=   ). The 

lower branch shifts to the right and has decreased magnitudes respectively, (Fig.11). For increasing the 

coefficient of nonlinear parametric excitation 2H , we get the same variation as in (Fig.7) so that the 

saddle node bifurcation exist at the points 5.6)=4.3,=3.13,=(   , (Fig.12). 

 

Figures (13-24) represent the frequency response curves for sub-harmonic solutions of order one-

fourth. In (Fig.13), the response amplitude has multivalued curves which bent to the right. The 

multivalued curve consists of two branches so that the upper branch has unstable solution for small 

values and stable solution for higher values and there exist a saddle node bifurcation at ( 3.6=1  ). 

The lower branch has unstable solution. The minimum point exist at( 0=1  ). When 1F  takes the 

values( 0.01, 1 and 3), we note that the multivalued curve shift to the right and move to downwards 

and has decreased magnitudes so that the minimum point shifts to the right respectively. The saddle 

node bifurcation are exist at the points ( 2.3=1.7,=3.6,= 111   ). The regions of multivalued, 

stability and definition are decreased, (Fig.15). As 1F  is decreased with negative values respectively, 

we note that the multivalued curve shift to the left move upward respectively and the minimum point 

move to the left respectively. The saddle node bifurcation exist at the points (

3.7=5.7,=11.7,= 111   ). The regions of multivalued, stability and definition are increased, 

(Fig.16). For decreasing 3F  respectively, we note that the multivalued curve shifts to the left and 

move upward respectively so that the minimum value shifts nearest to ( 0=1  ). The region of 

definition, multivalued and stability are increased, (Fig.18). when 3F  take values (0.01, 1, 3), we 

observe that the multivalued curve contracted respectively so that the upper branch has decreased 

magnitudes and the lower branch has increased magnitudes. The region of definition, multivalued and 

stability are decreased the upper branch, (Fig.19). For increasing and decreasing 5F , respectively, we 

get the same variation as in Figures(19, 20) so that the minimum point does not affect and exist at the 

same point ( 0=  ), Figs.(20, 21). For increasing 7F , we get the same variation as in (Fig.18) and 

(Fig.22), when 7F  take negative value ( 0.1=.. 7 Fei  ), we observe that the multivalued curves is bent 

to the left so that the saddle node bifurcation exist at the point ( 5.7=1  ). As 7F  is decreased further, 
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the multivalued curve shift downwards so that it has the same magnitude in the region and after this 

interval it has decreased magnitudes. The regions of definition, stability and multivalued are 

decreased, (Fig.22), 2H  is increased, we note that the multivalued curve is contracted and inclosed 

inside the main multivalued curves so that the minimum point move upwards and takes increased 

value respectively, (Fig.23). For increasing the damping factor  , we note the multivalued curve is 

contracting and given semi-oval so that the upper branch has stable solutions and has decreased 

magnitudes in small interval and after this interval it has the same magnitudes. The lower branch has 

increased unstable magnitudes. As 3= , the semi-oval is contracted so that the upper branch has 

stable solutions and the lower branch has unstable increased magnitudes. The zones of multivalued, 

definition and stability are decreased, (Fig.24). 

 

 

  

Fig.1 Fig.2 

 The frequency response curves of the sub-harmonic solution of order 
2

1
 for the parameters                                     

10=2,=3,=0.1,=0.9,=1,=0.3,=1,= 217531 HHFFFFo    

 

 
 

Fig. 3 Fig. 4 

Variation of the amplitude of the response with the detuning parameter for increasing and decreing 1F   
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Fig. 5 Fig. 6 

Variation of the amplitude of the response with the detuning parameter for for increasing and 

decreasing 3F   

 

 
 

                 Fig.7                Fig. 8  

Variation of the amplitude of the response with the detuning parameter for for increasing and 

decreasing 5F  
  

  

Fig. 9 Fig.10 

 Variation of the amplitude of the response with the detuning parameter for increasing and decreasing 

7F
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Fig. 11 

Variation of the amplitude of the response with the 

detuning parameter for increasing 1H  

  

Fig. 12 

Variation of the amplitude of the response with 

the detuning parameter for increasing and 

decreasing 2H  

 

  
Fig. 13 Fig. 14 

The frequency response curves of the sub-harmonic solution of order 
4

1
 for the parameters 

10=0.1,=0.1,=0.01,=0.01,=0.1,=1,= 27531 HFFFFo   
 

  

Fig.15 Fig.16 

Variation of the amplitude of the response with the detuning parameter for increasing and decreasing 

1F
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Fig.17 Fig.18 

Variation of the amplitude of the response with the detuning parameter for increasing and decreasing 

3F   

 

 

  
Fig.19 Fig.20 

 

Variation of the amplitude of the response with the detuning parameter for increasing and decreasing 

5F  
  

  

Fig. 21 Fig. 22 

  Variation of the amplitude of the response with the detuning parameter for increasing and 

decreasing 7F    
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Fig. 23                                                                            Fig. 24 

Variation of the amplitude of the response with the          Variation of the amplitude of the response 

with the detuning parameter for decreasing 2H                detuning parameter for increasing   

 

 

6 Conclusion 
 

Sub-harmonic solutions of even order (
4

1
,

2

1
) to a weakly second order differential equation governed 

the motion of a micro-electro mechanical system(MEMS) (Bandpass Filter) are investigated 

analytically. Applying the perturbation method(Multiple scales method) approximate expressions up 

to O )(  are obtained. For each types of periodic solutions the modulation equations in the amplitude 

and the phases, the steady-state solutions, the frequency response equations and the stability 

conditions are determined. Numerical calculations and the results are plotted in group of Figures, 

stable(unstable) solutions solid(dashed) curves and represent stable(unstable) solutions. Generally 

their exist two solutions higher stable and lower unstable and their exist jump phenomena. Bending of 

the curves in the Right direction of  axis. 
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