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ABSTRACT

The frequency-locking area of harmonic and subharmonic (3, %) solutions in a fast harmonic
excitation Mathieu-Van der PolDuffing equation is studied. A perturbation technique is then
performed on the slow dynamic near the harmonic and subharmonic (3, 1) solutions, to obtain
reduced slow flow equations governing the modulation of amplitude and phase of the corresponding
slow dynamics. Results show that fast harmonic excitation can change the nonlinear characteristic
spring behavior from softening to hardening and causes the entrainment regions to shift. Numerical

solutions are represented the analytical results.
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1 INTRODUCTION

In this paper, we study the effect of a fast
harmonic excitation(FHE) on the entrainment
area of the harmonic and subharmonic solutions
of order (1, 1) to a Mathieu-Van Der Pol-Duffing
solution. Entrainment or frequency-locking
phenomenon was investigated by many authors.
Advances in micro fabrication technology have
enabled the design and fabrication of Micro-
Electro- Mechanical Systems(MEMS) devices
in favor of multitude engineering fields that
include telecommunications, radar systems, and
personal mobiles. While providing improvements,
more advanced solutions were desired for
broadband performance, and the exploitation of
nonlinearity became a subsequent focus. To
date, a number of nonlinear energy harvesting
studies have been conducted, mostly focusing
on the mono stable Duffing [1, 2]. Sebald et
al. [3] described a similar technique whereby
an impulsive voltage could be applied in the
harvesting circuit to achieve the same objective.
Among the numerous actuation methods for
MEMS devices is electrostatic actuation, which is
the most well established technique because of
its simplicity and high efficiency [4]. Their design
is appropriate for highly tunable 4 microbeams,
which offer minimal packaging constraints,
low-power consumption, low damping, ease
of parameter tuning, and relatively simple
integration with electronics. Rhoads and co-
workers [5, 6] described a filter design based
on the nonlinear response of parametrically-
excited MEMS oscillators that have significant
potential in many communications applications.
Alsaleem et al. [7] investigated the nonlinear
phenomena, including primary resonance,
superharmonic and subharmonic resonances,
in electrostatically actuated resonators both
experimentally and theoretically. Harmonic,
subharmonic and super-harmonic resonance of
weakly nonlinear dynamical system subjected
to external excitation, parametric excitation
or both are investigated by Elnaggar et al.
[8]. Zhang and Tang [9] investigated the
chaotic dynamics and global bifurcations of
the suspended inclined cable under combined
parametric and external excitations.A theoretical
discussion and some numerical results relating
to a nonlinear state designed for shallow cable
vibration are presented and studied by Faravelli

and Ubertini [10]. Pandey et al. [11] studied
the entrainment in a MEMS to a limit cycle by
using the perturbation analysis, also [12] studied
frequency-locking in a forced Mathieu van der Pol
Duffing system near the principal resonances and
provided application in optically driven MEMS
resonators. Belhaq [13, 14] investigated 2:2:1
solutions in quasi periodic Mathieu equation.
Mohamed et al. [15] 2:1 and 1:1 solutions in
Mathieu-Van-der-Pol-Duffing oscillator.

2 PERTURBATION ANALYSIS

In this paper, we study the mathematical model
is represented the dynamical behavior of this
micro dynamical system is the following weakly
nonlinear second order differential equation

/

" +wlz — e(a — Ex*)a’ — eha cos(Q)+

e(a1z? — azz® + azz’) — eF cos(Qt) (2.1)

— ng(f%ac2 + ifl) cos(Q2t) =0

Eqg.(2.1) is a generalized Mathieu-Van der
PolDuffing equation subjected a weakly nonlinear
parametric excitation and external excitation [15],
e is a small parameter ¢ <« 1, w, is the
linear natural frequency, 2 is frequency of the
external excitation, where damping «, &, a1, a2
and as are the coefficients of the nonlinear terms,
excitation amplitudes. h, F1 and F> are constants
represents the coefficient, of linear parametric
and nonlinear parametric excitation and external
excitation, respectively. Let

x(t;€) = xo(To, Ti)+ex1 (To, Th)+O(°), Tr, = €"t,
(2.2)
where T, = t is the first scale associated with
changes occurring at the frequencies w, and
Q,and T1 = et is a slow scale associated with
modulations in the amplitude.
d d?dt?

7 :DoJrGDl +,

y D%+ 2¢D,D1 + ...,

(2.3)

where D, = 52- . Substituting Egs.(2.2) and
(2.3) into Eq.(2.1) and equating terms with the
same power of on both sides, we obtain a system

of linear partial differential equations

O1) : Dizo+ w2z, = 0 (2.4)
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O(e) : D2xy +wiey = —[2DoD1xo + (—a + £x2)Dizo + cr
+ (—F1 — hzo + észg - ingi) cos[QT5,]] (2.5)
— ) + sz,
The solution of Eq.(2.4) can be expression the form
2o(To, T1) = A(T1)e™ T + A(Ty)e o7, (2.6)

where A is the amplitude of the response and is a function of 71 and A is the complex conjugate of
A, substitute Eq.(2.6) into Eq.(2.5), we get

Dgxl + wiml = —¢twoTo (—iaAw, — 342004 + i§A2woA + 2w, A")
— 2140(114 — (7% + %AFQA — %A2F2A2)€ZQTO

4 Lp A eoTo _ a2, 2% 4 L p, f1ci0- 100 T
2 48
* (iF 24— %AFQA?’)J(“‘””’T” + NST. + c.c,

where N ST denotes the terms does not produce secular terms and c.c denotes the complex conjugate.
Any particular solution of Eq.(2.7) contains secular terms, which are generated by the first term on the
right-hand side of Eq.(2.7). Moreover, it may contains small-divisor terms depending on the solution
condition. Eq.(2.7) contain harmonic solution and two cases subharmonic solutions (2 ~ nw,);
n = 1,2,3. In this paper we restricted our attention to harmonic and two cases of subharmonic

solutions of order (3, 3).

3 HARMONIC SOLUTION (0 ~ w,)

In this section, we study harmonic solution of Eq.(2.1) i.e periodic solution with period equal to the
period of the excitation term (2 ~ w,). Introducing the detuning parameter o to convert the small
divisor term into secular term in Eq.(2.7) i.e

Q=w,+eo (3.1)
Eliminating the secular terms, we get
i0Aw, — 2iwe A + 3A% a0 A — i€ A%w, A + Nt = 0, (3.2)
where \ = 1(Fy — (A — 1A?A%)F,). Using the polar form A(T1) = Ja(T1)e”™), we obtain

d:—éa3£+%aa+i(%—a2§2 +a1421;2)51n’77 (3-3)
where v = ¢T1 — 3 for steady state solution, ¢ = 4 = 0, in Egs.(3.3) and (3.4), we obtain
wio(% _ a28FQ + af;;)siny = éaBE — %aa (3.5)
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Egs.(3.5) and (3.6) show that there are no trivial solution at a = 0. For non-trivial solution i.e. ata # 0,

eliminating ~ from Eq.(3.5) and Eq.(3.6), we get the following the frequency-response equation
F1 a2F2 a4F2

1 3 3alas

1 2 2 1 2
- _ - =(—(= — 3.7
(ga'€ —gaa)” + (a0 + = —=)" = (-(5 3 128 ) (3.7)
i.e.
_ —48a" 0w, + /24 F2 + 21\ Fy + 20 F3 + 23 3.8)
7= 128a2w? ’ '
where z; = (—2048a* + 128a%)w?, 2o = (256a® — 32a® + a'0)w?,
23 = (—256a°¢? + 2048a°Car — 40964 a?)wh and z4 = 4096a>w?.
A first-order approximation for the solution of Eq.(2.1) can be derived as
z = acos(Q —v) + O(e) (3.9)
To determined the stability of the nontrivial solution, let
a=ao+ai(Th) & 7= +m(T1), (3.10)

where a, and ~, are given by Egs.(3.5) and (3.6). Inserting Eq.(3.10) into Eq.(3.3) and Eq.(3.4) and
using Egs.(3.5) and (3.6) and keeping only the linear terms in a; and ~1, we get

F F F E
(p1F1+ p1 2)@1 n (p3F1 + pa 4)71
P8 P8
, Fy + ps F
"= (o & pol%) 2)al + (p7)m (8.12)
Ao P8
where p1 = —192a2¢w, + 2560w,, pa = 16attw, + aléw, + 64aZaw, — 12akaw,,
p3 = —192a§a2 — 512a,0w,,
pa = 48aSan — 3alas + 128ad 0w, — 8adow,,
ps = 64(9a2as + 8ow,), ps = —a2(3a2(16 + a2)az + 8(—16 + 3aZ)ow,),

0%57404

pr = —222"% and ps = 8(64F1 — 16a2Fs + aj Fa)wo

(3.11)

Egs.(3.11) and (3.12) admit solution of the form (a1, ¢1) o (c1,c2)e’™* where (c1,c2) are constants.
Provided that,

1 1
0=z17 £ \/22(218+219+220++213F1F2wg)7 (3.13)

8 2w?
where

25 = 64F) — 16a%Fy + a*Fy, 26 = —110592a*, 27 = 36864a° — 115248,
28 = —2304a® + 9a'?, 29 = —393216a2, 210 = 98304a”,

211 = —1536a% + 96a'°, 210 = 4096a*(? — 26214402,

z13 = —128a%b? — 81920 ¢ + 1024a5¢a + 8192a 02,

214 = a2 +128a8a — 16a'%a, 215 = 4096a* — 1024a® + 64a®,

2 4 4
z16 = 16384a” — 4096a° + 192a°, 27 = =32« &f1t6dalitla Fhma aly
2z5

2 2 2 2
z18 = 26 Fias + z12w5, 219 = (27F1 + 28 F2) Faai, 220 = (20 F1 + z10F2) 0 Fiaw,

and
2 2 2 22 2 22 2
221 = 2110 F5 avowo + z14EF5w; + zisa” Fswy + z160° F5w; .

Consequently, a solution is stable if and only if the real parts of eigenvalues Eq.(3.13) are less than
or equal to zero.
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4 SUBHARMONIC SOLUTION OF ORDER (1) (2 ~ 2u,)

In this section, we study subharmonic solution of order % i.e periodic solutions with period equal two
multiple of the period of the excitation term i.e (2 = 2w,). Introducing the detuning parameter o, to
convert the small divisor term into secular term in Eq.(2.7).
i.e
Q = 2w, + €01, (4.1)
and, we can write
(Q = wo)To = woTo + 01Ty = woTo + o1Th. (4.2)

Using Eq.(4.2), the small-divisor term arising from ¢'(*=2~2) in Eq.(2.7) can be transformed into a
secular term. Then, eliminating the secular terms yield

— 2iwe A’ +iaAw, + 3A%a2 A — zfAQwoA + %hz@emln =0. (4.3)
By using
A(T) = %a(Tl)eiB(Tl), (4.4)
where a and g are real. Inserting Eq.(4.4) into Eq.(4.3) are real and imaginary parts, we obtain
,_ 13 1 R
G=-za §—|—2aa—|—4w0ahsm¢>. (4.5)
3
ap = 3a"az +ao1 + ! ah cos ¢, (4.6)
4(4}0 zwo

where a and ¢ are the amplitude and the phase,
¢ =o11T1 —20. (4.7)

It is obvious that, Egs.(4.5) and (4.6) have a trivial solution which of corresponds to the trivial steady
state solution. Non-trivial steady state solution correspond to the non-trivial fixed points (Equilibrium

,

points) of Egs.(4.5) and (4.6). That is, they satisfy ¢ = ¢ = 0, and are given by

1 ) 145 1

o o = —A,€ — =aoQ. 4.

4woa hsin ¢, 3@ 13 5 0o (4.8)
3a3a2 1

o o= ——— — —Q,01. 4.

4woa hcos ¢ S, 5001 (4.9)
Eliminating sin ¢, and cos ¢, from Eqs.(4.8) and (4.9) yields the frequency-response equation
15, 1 5 3agoz 1 5 1 5

(Saof 2aoa) + ( 8o, 2a001) = (—4(% aoh) (4.10)

—3aasw, & /4h2w? — a1€2wi + 8a2fawd — 1602w}
4w?

Then, the first-order uniform expansion of the solution (first approximation) of Eq.(2.1) is given by

(4.11)

g1 =

x:acos(%Qt— %¢)+0(e) (4.12)

The analysis of the stability of the trivial solutions is equivalent to the analysis of the linear solutions
of Eq.(4.3) by neglecting the nonlinear terms we get

— 2iw, A’ + i Aw, + %hAewlTl =0 (4.13)



El-Naggar et al.; JSRR, 13(6), 1-15, 2017, Article no.JSRR.32122

To determine the stability of the trivial steady state solution, it is convenient to rewrite A in the form

A= (B(Ty) +ib(Ty))ez 1T (4.14)
where B and b are real and imaginary parts and get
6+%b71“13:0, (4.15)
Bf%Bngb:(), (4.16)
where I'y = (%t%h) andI'; = (“’”;T:%h). Eqgs.(4.15)and(4.16) admit solution of the form (B, b)

(B, b)e’*Tr, where (B, b) are constant. The eigenvalues of the coefficient matrix of Egs.(4.15) and

(4.16) are
Oé2
6, =+ I—i—Fng (417)

Then, the trivial solution is stable if the real parts of both eigenvalues are less than or equal zero. To
determine the stability of the non-trivial steady state solutions given by Egs.(4.8) and (4.9). Let

a=ao,+ai(Th) & ¢ = do + d1(Th), (4.18)

where a, and ¢, correspond to a nontrivial steady state solutions and a1 and ¢: are perturbations
which are assumed to be small compared with a, and ¢,. Substituting Eq.(4.18) into Egs.(4.5) and
(4.6) and linearizing the resulting equations, we obtain

; 3ad 2a001Wo
= —(12 gy — (Hat2 R (4.19)
/ 3 o 3 —4
1= (G52 — (aéfa)m (4.20)
Substituting a1 = I'1e®?* and 411 = ['2e™* into Eq.(4.19) and Eq.(4.20). We get

Iy (—6agaz) + Ta((adb — 4o + 46) w) = 0,
2 3 (4.21)

Iy (2a3bwo + 80wo) + I'z (3adas + 4agowy) = 0.

For the nontrivial solution, the determinant of the coefficient matrix for I'y and T's must
vanish, which leads to a quadratic equation for the eigenvalue 6.

—3(3a2ag + 401w, )a?ag + 4aw?
16w?2

1
6= Z(—a2§ +20) £ \/ (4.22)
The solution is stable if and only if the real part of each of the eigenvalues of the coefficient
of the matrix are less than or equal to zero.

5 SUBHARMONIC SOLUTION OF ORDER (1) ( ~ 3w,)

In this section, we study subharmonic solution of order % i.e the periodic solution with
period equal two multiple of the period of the excitation term i.e (© ~ 3w,). Introducing the
detuning parameter o5 to convert the small divisor term into secular term in Eq.(2.7).
i.e

Q = 3w, + €oa, (5.1)
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so, we get
(= 2wo)T, = woTp + toaTy = woTy + 0211 (5.2)

Eliminating the secular terms form the Eq.(5.2) yields

— 2iw, A’ + iaAw, + 3A%a A — iEA%W, A — 3(1 — ZA)F A%t 2T = (5.3)

1
3

Using the polar form A(Ty) = 1a(T1)e"#(™), we obtain

1, dR 1, 1
= — Fy— - - 5.4
= ~({5o, ¢ 12~ qog,, ) Sin¥ — geE + ga, (54)
W = —(—_a2F 3a4F2)Cos¢ | 9der o (5.5)
a = — a — .
160, " 727 192w, 8w, >

where q, v are the amplitude and the phase and ¢ = o277 — 33. for steady state solution,

’

a =1 =0, in Egs.(5.4) and (5.5) we obtain

1 I 1, 1
(16w aZFy — 1925 )sint, = —éaig + 5 o0 (5.6)

1 2 a4F2 3&3042 1
- =2 o = —2 ~a,09. 5.7
(Tom, @oF2 = qgg,, ) 008 Vo = 5= T 30002 57

Equations (5.6)and(5.7)show that there are two possibilities: (trivial solution) at « = 0 and
(nontrivial solution) at a # 0. Squaring and adding Egs.(5.6)and(5.7) we get the frequency-
response equation

B —72a% 0w, + \/A1F22w2 + Agw?

64w? ’ (5-8)

02

where

Ay = 14402 — 24a* + a5, Ay = —576a*€? + 4608aEar — 921602,
Then, the first-order uniform expansion of the solution (first approximation) of Eq.(2.1) is
given by

x = acos(%Qt - %1/)) +O(e) (5.9)

Now, the analysis of the stability of the trivial solutions is determined as in the preceding
section (4), so we get the eigenvalues equation obtained as

00:1\/%2—(%)2. (5.10)

The solution is unstable if and only if the real part of the fixed points are positive. To
determine the stability of the nontrivial solutions, we use the averaged Eq.(5.4) and Eq.(5.5)
when the last term in these equations does not exist and let the nontrivial solutions have
small variation from the steady state solutions a, and - so that

a(Th) = ag + a1 (T1) & Y2(T1) = v20 + v22(T1), (5.11)
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where a; and ~;; are assumed to be infinitesimal. Thus, the solution of Egs. (5.4) and (5.5)
are stable or unstable depending on whether the functions a; and ~,; decay or grow with
timeT;. Inserting Eq.(5.11) into Egs.(5.6) and (5.7) when the terms containing v, in these
equations does not exist and keeping only linear terms in the perturbed quantities, using
steady-state Egs.(5.6) and (5.7), we obtain

(36a3bwo + 3agbwy + 144awy — 36a3awp)

ay = a
' 24 (—12 + a0%) wy ' 5.12)
(108a3 vy — 9ajaz + 96agowy — 8aiowp) -
24(—12 + a2)wo 122
. _3(36@%042 + 3agas — 3209wp + 8adoawp) .
2= 8(—12ag + a3 )wo ! (5.13)
(—12a3bwg + adbwo + 48agawy — 4adawy) '
8(—12ag + a3)wo 122
Substituting a; = I'1ef™* and v, = I'2e?™* into Eq.(5.12) and Eq.(5.13), we get
['2(3agbwo + 48ag (3 — 20)wo — 4a3 (90 + 3o — 26)wp )+
['1(9a2(12 + ad)as — 960wy + 24a3owy) = 0 (5.14)
['1(—3agbwy — 12a3(3b — 3o — 20)wp — 144(a + 26)wp)+ '
T2(9a3(—12 + a3)as — 96agowy + Sagowo) =0

For the nontrivial solution, the determinant of the coefficient matrix for I'; and I'y must
vanish, which leads to a quadratic equation for the eigenvalue 6.
(24 — a?)a*¢ — 48

8A3

0 =

L (5.15)

+ g\/(rgoﬂ (As03 + Asoraow, + (Ag€? + Aréa + Aga® + Agor)w?)),
3%o

where

Az = —12 +a?, Ay = —3888a* + 27a®, A5 = —1152a* + 96a°,
Ag = 144a* — 48a5 + 448, A; = —2304a? + 672a* — 4845,
Ag = 9216 — 2304a? + 144a* and Ay = 3072 — 1024a? + 64a*.

Consequently, a solution is stable if and only if the real parts of both eigenvalues Eq.(5.15)
are less than or equal to zero.

6 NUMERICAL RESULTS AND 6) represent the frequency-response curves
of the harmonic solution for the parameters
DISCUSSIONS (Wo = 0.7,6 = 10,h = 0.01, 0 = —0.5, F} =

2, F, = 0.5,a0 = 0.2).
By solving equations of the frequency 2 2 )

response Egs.(4.11) and (5.8) and stability In Fig. (1), we observe the response
conditions (4.17), (4.22), (5.10) and (5.15) amplitude has single-valued curve and
numerically and plotting the numerical all solutions are stable. The maximum
results in group of figures, we have Figs. (1-
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point exist at ¢ = 0. For increasing
and decreasing the damping factor a with
negative value, we note that the single-
valued curve shifts upward and downward
so that the maximum value has increased
and decreased magnitudes respectively,
Fig. (2). When the coefficient of cubic
term «s is decreased with negative value
and increased with positive value, we note
that the response amplitude is bent to the
right and left and has harding and softing
phenomena. The maximum points are exist
ato =1.024, 0 = 0.67 and o = 0.95, Fig. (3).
As the nature frequency w, take the values
0.7 and 5, we observe that the response
amplitude shift upward and downward and
has increased and decreased maximum
value at ¢ = 0, Fig. (4). Fig. (5), when
the coefficient of parametric excitation F;
is decreased and increased with negative
and positive values respectively, we get the
same variation as in Fig. (2) and Fig. (6).

Figs. (7-13) represent the frequency-
response curves of subharmonic solution of
order (%) for the parameters (w, = 0.09,¢ =
0.1,h = 0.01,a = 0.02, ag = —0.04).

In Fig. (7), the response amplitude has
multivalued curve so that the left branch
has stable and unstable solution and the
right branch has unstable solutions. There
exist a harding phenomena because the
multivalued curve is bent to the right. When
a = 0.1, we note that the multivaled
curve is expanding and containing the
main multivalued curve. The regions
of multivalued, stability and stability are
increased, Fig. (8). As as = 0.04, we note
that the multivalued curve shifts to the left
and the zones of multivalued and definition
are decreased. For further increase of
as, the multivalued curve shifts to the
left and the zones of stability, multivalued
and definition are increased. There exist
a softing phenomena, Fig. (9). When
ag is increased with negative value, the
multivalued curve is expanded and shift to
the right. The region of stability multivalued

and definition are increased, Fig.
As w, = 0.1, the multivalued curve shifts
to right, Fig. (11). For increasing the
coefficient of parametric excitation h, we
observe the multivalued curve contracted
and lies inside the main multivalued curve,
Fig. (12). The regions of multivalued,
stability and definition are decreased, Fig.
(13).

(10).

Figs. (14-20) represent the frequency-
response curves of subharmonic solution of
order (one-to-third) for the parameters (w, =
09,£=7,F,=8a=02a, =-10).

In Fig. (14), the response amplitude has
oval which is bent to the right and there
exist a harding phenomena. The left branch
has stable and unstable solution and the
right branch has unstable solutions. As as
is increased and decreased with negative
values, we note that the oval shifts to the
left and to the right so that the regions
of multivalued, stability and definition are
decreased and increased respectively, Fig.
(15). When «, takes the values (5, 10, 15),
we note that, the oval is bents to the left
respectively and has softing phenomena,
Fig. (16). For increasing a, we note
that the oval expanding and contracted
which lies outside and inside the main oval
respectively. The regions of multivalued,
stability and definition are increased and
decreased respectively, Fig.(17). As Fy, =
2, the oval contracted and given a small
oval lies in the main oval so that the zones
of definition, multivalued and stability are
decreased. When F;, increased, the oval
is expanded which containing the main oval
so that the zones of definition, multivalued
and stability are increased, Fig. (18). For
decreases and increases &, we get the
same variation as in Fig. (18)and Fig.
(19). When w, takes the value (0.7, 1.7),
we observe that the oval expanding and
contracted and shifts to the downward and
upward respectively. The zones of definition,
multivalued and stability are increased and
decreased respectively, Fig. (20).
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12

Fig. 1. The frequency response curves of the harmonic solution for the parameters
(wWo =0.7,6=10,F1 =2, F, = 0.5, = —0.5, 00 = 0.2

14
12
10

(o] 0.8
0.6

0.4

021 b

00 ‘ ‘ ‘
—4 -2 0 2 4

Fig. 2. Variation of the amplitude of the response with the detuning parameter for increasing
and decreasing o

14 1 14 1

o g
Fig. 3. Variation of the amplitude of the Fig. 4. Variation of the amplitude of the
response with the detuning parameter response with the detuning parameter
for increasing and decreasing a- for increasing and decreasing w,

10
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g o
Fig. 5. Variation of the amplitude of the Fig. 6. Variation of the amplitude of the
response with the detuning parameter response with the detuning parameter
for increasing and decreasing I for increasing and decreasing F»
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Fig. 7. The frequency response curves of the subharmonic solution of order 1 for the
parameters [w, = 0.09,£ = 0.1,h = 0.01,a = 0.02, 0 = —0.04 ]

15

10

05-

0.0

. . . . . L
0.0 0.5 10 15 20 25 T 25 -20 -15 -10 -0.5 0.0 0.5

01 01
Fig. 8. Variation of the amplitude of the Fig. 9. Variation of the amplitude of the
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Fig. 12. Variation of the amplitude of the response with the detuning parameter for increasing
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Fig. 13. Variation of the amplitude of the response with the detuning parameter for increasing

and decreasing ¢
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Fig. 14. The frequency response curves of subharmonic solution of order : for the
parameters [w, = 0.9, =7, F» =8,a = 0.2, 2 = —10]
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Fig. 17. Variation of the amplitude of the Fig. 18. Variation of the amplitude of the
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Fig. 19. Variation of the amplitude of the response with the detuning parameter for increasing
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Fig. 20. Variation of the amplitude of the response with the detuning parameter for increasing
and decreasing w,

7 CONCLUSION

In this paper, we have investigated an
analytically of harmonic and subharmonic
solutions of order 3 and i for a weakly
nonlinear second order differential equation
which governed modified Mathieu-van
der PolDuffing equation. The method of
multiple scales is used to determine the first
approximate of the solution and two first
order ordinary differential equations which
describe the modulation of the amplitude
and the phase. Steady state solution and its
stability are obtained. Numerical solutions
of the frequency response equation and the
stability equation are carried out for different
values of the parameters in the equation.

14

Results are represented in a group of figures
in which solid curves (dashed) are denoted
stable (unstable) solutions.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

References

[1] Asghari M, Ahmadian MT, Kahrobaiyan
MH, Rahaeifard M. On the size-
dependent behavior of functionally
graded micro-beams. Materials and
Design. 2010;31:2324-2329.



El-Naggar et al.; JSRR, 13(6), 1-15, 2017, Article no.JSRR.32122

(2]

(3]

(4]

Rhoads JF, Shaw SW, Turner KL. Non-

a weakly non-linear parametric and

linear dynamics and its applications external  excitations. International
in micro-and nanoresonators. Journal of Applied Mathematical
J. Dyn. Syst. Meas. Control. Research. 2013;2(2):252-263.

2010;132(3):034001, (14 pages).

Sebald G, Kuwano H, Guyomar D,
Ducharne B. Simulation of a Duffing

[9]

Zhang W, Tang Y. Global dynamics of
the cable under combined parametrical
and ex- ternal excitations. International

os- cillator for broadband piezoelectric Journal of Non-Linear Mechanics.
energy harvesting. Smart Mater. 2002;37(3):505526.
Struct. 2011;20(7). [10] Faravelli L, Ubertin F. Nonlinear

Marqus AF, Castell RC, Shkel AM.
Modelling the electrostatic actuation
of MEMS: State Of The Art 2005,
Technical Report, IOC-DT. 2005;18:1-

state observation for cable dynamics.
Journal of vibration and Control.
2009;15:10491077.

[11] Pandey M, Rand RH, Zehnder A.

24. Perturbation analysis of entrainment
[5] Rhoads JF, Shaw SW, Turner KL, in a micromechanical limit cycle

Baskaran R. Tunable microelectrome- oscillator. Commun. Nonlinear. Sci.

chanical Systems filters that Numer. Simul. 2007;12:12911301.

exploit paramgtric resonance. [12] Pandey M, Rand RH, Zehnder

Journ_al of .Vlbratlon and Acoustics. A. Frequency locking in a forced

2005;127(5):423-430. Mathieuvan der PolDuffing system.
[6] Rhoads JF, Shaw SW, Demartini Nonlinear Dyn; 2007. DOI:

BE, Moehlis J, Turner KL. Gener- 10.1007/s11071-007-9238-x

alized arametric resonance

in elecrftrostatically actuated [13] Belhaq. M, Houssni M. Quasi-pgriodic

microelectromechanical oscil- lators. OSC'”at'.onS’ chaqs and suppression of

Joura ol Sound and Viraion.  RC% 1 2 Tennes seola ner
7 i(l)oi’zgrs(;l\j)'zzn?:?v'” Ouakad HM Nonlinear Dyn. 1999;18:124.

salee , , )

On the nonlinear resonances and L14] Rand RH, Guennoun K, Belhagq M.

dynamic pull-in of electrostatically 2:2:1 Resonance in the quasi-periodic

actuated resonators. Journal Mathieu equation. Nonlinear Dyn.

of  Micromechanics and  Micro- 2003;31:187193.

engineering. 2009;19:1-14. [15] Mohamed Belhaq, Abdelhak Fahsi.

(8]

Elnagger AM, El-Bassiouny AF, Mosa
GA. Harmonic and sub-harmonic
resonance of MEMS subjected to

2:1 and 1:1 frequency-locking in fast
excited van der PolMathieuDuffing
oscillator. Nonlinear Dyn. 2008;53:139.
DOI: 10.1007/s11071-007-9302-6

© 2017 El-Naggar et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/18720

15


http://creativecommons.org/licenses/by/4.0

	INTRODUCTION
	PERTURBATION ANALYSIS 
	HARMONIC SOLUTION (o)
	SUBHARMONIC SOLUTION OF ORDER (12) (2o) 
	SUBHARMONIC SOLUTION OF ORDER (13) (3o)
	NUMERICAL RESULTS AND DISCUSSIONS 
	CONCLUSION

