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Chapter 1

Matlab Technical Computing

Environment

The primary goal of this chapter is to help you to become familiar with the

Matlab software, a powerful tool. It is particularly important to familiarize

yourself with the user interface and some basic functionality of Matlab.

To this end, it is worthwhile to at least work through the examples in

this chapter (actually type them in and see what happens). Of course,

it is even more useful to experiment with the principles discussed in this

chapter instead of just sticking to the examples. The chapter is set up in

such a way that it affords you time to do t

1.1 Purpose and Philosophy of Matlab

Matlab is a high-performance programming environment for numerical

and technical applications. The first version was written at the Univer-

sity of New Mexico in the 1970s. The “MATrix LABoratory” program

was invented by Cleve Moler to provide a simple and interactive way to

write programs using the Linpack and Eispack libraries of FORTRAN

subroutines for matrix manipulation. Matlab has since evolved to become

an effective and powerful tool for programming, data visualization and

analysis, education, engineering and research.

1
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The strengths of Matlab include extensive data handling and graphics

capabilities, powerful programming tools and highly advanced algorithms.

Although it specializes in numerical computation, Matlab is also capable

of performing symbolic computation by having an interface with Maple (a

leading symbolic mathematics computing environment). Besides fast nu-

merics for linear algebra and the availability of a large number of domain-

specific built-in functions and libraries (e.g., for statistics, optimization,

image processing, neural networks), another useful feature of Matlab is its

capability to easily generate various kinds of visualizations of your data

and/or simulation results.

For every Matlab feature in general, and for graphics in particular,

the usefulness of Matlab is mainly based on the large number of built-in

functions and libraries. The intention of this tutorial is not to provide a

comprehensive coverage of all Matlab features but rather to prepare you

for your own exploration of its functionality. The online help system is

an immensely powerful tool in explaining the vast collection of functions

and libraries available to you, and should be the most frequently used

tool when programming in Matlab. Note that this tutorial will not cover

any of the functions provided in any of the hundreds of toolboxes, since

each toolbox is licensed separately and their availability to you can vary.

We will indicate in each section if a particular toolbox is required. If you

have additional toolboxes available to you, we recommend using the online

help system to familiarize yourself with the additional functions provided.

Another tool for help is the Internet. A quick online search will usually

bring up numerous useful web pages designed by other Matlab users trying

to help out each other.

As stated previously, Matlab is essentially a tool sophisticated one, but

a tool nevertheless. Used properly, it enables you to express and solve

computational and analytic problems from a wide variety of domains.
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The Matlab environment combines computation, visualization, and pro-

gramming around the central concept of the matrix. Almost everything

in Matlab is represented in terms of matrices and matrix-manipulations.

Matlab provides a technical computing environment designed to sup-

port the implementation of computational tasks.

Briefly, Matlab is an interactive computing environment that enables

numerical computation and data visualization.

Matlab has hundreds of built-in functions and can be used to solve

problems ranging from the very simple to the sophisticated and complex.

Whether you want to do some simple numerical or statistical calculations,

some complex statistics, solve simultaneous equations, make a graph, or

run and entire simulation program, Matlab can be an effective tool.

Matlab has proven to be extraordinarily versatile and capable in its

ability to help solve problems in applied math, physics, chemistry, engi-

neering, finance - almost any application area that deals with complex

numerical calculations.

1.2 Workspace, Windows, and Help

Running Matlab

• Unix: From a terminal window, type Matlab, followed by the Enter

key.

• Win95, Winxp and Win7: double-click on the Matlab icon or select

Matlab from Start/Programs.

Display Windows

• Command window Enter commands and data, display results Prompt

>> or EDU >>

• Graphics (Figure) window
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Display plots and graphs

Created in response to graphics commands

• M-file editor/debugger window

Create and edit scripts of commands called M-files

When you begin Matlab, the command window will be the active window.

As commands are executed, appropriate windows will automatically ap-

pear; you can activate a window by clicking the mouse in it.

Getting Help

• help On-line help, display text at command line

help, by itself, lists all help topics

help topic provides help for the specified topic

help command provides help for the specified command

help help provides information on use of the help command

• helpwin - On-line help, separate window for navigation.

• helpdesk - Comprehensive hypertext documentation and troubleshoot-

ing

• demo - Run demonstrations

• intro - Interactive introduction to Matlab

Interrupting and Terminating Matlab

• Ctrl-C (pressing the Ctrl and c keys simultaneously): Interrupts (aborts)

processing, but does not terminate Matlab. You may want to inter-

rupt Matlab if you mistakenly command it to display thousands of

results and you wish to stop the time-consuming display.
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• quit: Terminates Matlab

• exit: Terminates Matlab

• Select Exit under File menu: Terminates Matlab (MS Windows)

1.3 Scalar Mathematics

Scalar mathematics involves operations on single-valued variables. Mat-

lab provides support for scalar mathematics similar to that provided by a

calculator. For more information, type help ops.

The most basic Matlab command is the mathematical expression, which

has the following properties:

• Mathematical construct that has a value or set of values.

• Constructed from numbers, operators, and variables.

• Value of an expression found by typing the expression and pressing

Enter

1.3.1 Numbers

Matlab represents numbers in two form, fixed point and floating point.

Fixed point: Decimal form, with an optional decimal point. For exam-

ple:

1.2458 -255 0.00012

Floating point: Scientific notation, representing m× 10e

For example: 1.2458× 104 is represented as 1.2458e4

It is called floating point because the decimal point is allowed to move.

The number has two parts:

• mantissa m: fixed point number (signed or unsigned), with an op-

tional decimal point (2.6349 in the example above)
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• exponent e: an integer exponent (signed or unsigned) (4 in the ex-

ample).

• Mantissa and exponent must be separated by the letter e (or E).

Scientific notation is used when the numbers are very small or very large.

For example, it is easier to represent 0.0000000002 as 2e-9.

Matlab recognizes several different kinds of numbers

Table 1.1:
Type Examples

Integer 1612, -1597

Real 1.242, -8.76

Complex 3.41 - 2.3i (i =
√
−1)

Inf Infinity (result of dividing by 0)

NaN Not a Number, 0/0

All computations in Matlab are done in double precision, which means

about 15 significant digits. The format-how Matlab prints numbers-is con-

trolled by the “format” command. Type help format for full list. Should

you wish to switch back to the default format then format will suffice.

Table 1.2 below indicates the affect of changing the display format for

the variable rt.
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Table 1.2: Display formats.

Command Description Example

format short
Fixed-point with 4 >> rt = 351/7

decimal digits rt = 50.1429

format long
Fixed-point with 15 >> rt = 351/7

decimal digits rt = 50.142857142857146

format short e
Fixed-point with 4 >> rt = 351/7

decimal digits rt = 5.0143e+01

format long e
Fixed-point with 15 >> rt = 351/7

decimal digits rt = 5.014285714285715e+01

format short g
Best of 5 digit fixed or >> rt = 351/7

floating point rt = 50.143

format long g
Best of 15 digit fixed or >> rt = 351/7

floating point rt = 50.1428571428571

format bank
Two decimal digits >> rt = 351/7

rt = 50.14

format compact
Eliminates empty lines to allow more

lines with information displayed on the screen

format loose Adds empty lines (opposite of compact)

1.3.2 Operators

The evaluation of expressions is achieved with arithmetic operators, shown

in the table below. Operators operate on operands (a and b in the table).

Examples of expressions constructed from numbers and operators, pro-

cessed by Matlab:

>> 2 + 5

ans =

7

>> 5/10

ans =

0.5000
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Table 1.3:
Operation Algebraic form Matlab Example

Addition a+ b a+ b 5 + 2

Subtraction a− b a - b 7 - 2

Multiplication a× b a*b 3 * 4

Right division a÷ b a/b 12/6

Left division b÷ a a\b 6\12

Exponentiation ab a ˆ b 3ˆ2

Prompt >> is supplied by Matlab, indicates beginning of the command.

ans = following the completion of the command with the Enter key marks

the beginning of the answer.

Precedence of operations (order of evaluation)

Since several operations can be combined in one expression, there are rules

about the order in which these operations are performed:

1. Parentheses, innermost first.

2. Exponentiation (ˆ), left to right.

3. Multiplication (*) and division (/ or \) with equal precedence, left to

right.

4. Addition (+) and subtraction (-) with equal precedence, left to right.

When operators in an expression have the same precedence the op-

erations are carried out from left to right. Thus 4 /5*6 is evaluated as

(4/5)*6 and not as 4 / ( 5 * 6 ).

>> (2/3^2*5)*(3-4^3)^2

ans =

4.1344e+03
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1.3.3 Variables and Assignment Statements

Variable names can be assigned to represent numerical values in Matlab.

Assignment statement: Matlab command of the form:

• variable = number

• variable = expression

When a command of this form is executed, the expression is evaluated,

producing a number that is assigned to the variable. The variable name

and its value are displayed. If a variable name is not specified, Matlab

will assign the result to the default variable, ans, as shown in previous

examples.

>> 3-2^4

ans =

-13

>> ans*5

ans =

-65

The result of the first calculation is labelled ans by Matlab and is used in

the second calculation where its value is changed.

We can use our own names to store numbers:

>> x = 3-2^4

x =

-13

>> y = x*5

y =

-65
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so that x = 13 and y = −65.

Special variables:

ans: default variable name

pi: ratio of circle circumference to its diameter, pi = 3.1415926...

eps: smallest amount by which two numbers can differ

inf or Inf : infinity, e.g. 1/0

nan or NaN : not-a-number, e.g. 0/0

date: current date in a character string format, such as 1-September-

2012.

flops: count of floating-point operations.

Commands involving variables:

who: lists the names of defined variables

whos: lists the names and sizes of defined variables

clear: clears all variables, resets default values of special variables

clear var : clears variable var

clc: clears the command window, homes the cursor (moves the prompt

to the top line), but does not affect variables.

clf: clears the current figure and thus clears the graph window.

more on: enables paging of the output in the command window.

more off: disables paging of the output in the command window.

When more is enabled and output is being paged, advance to the next

line of output by pressing Enter; get the next page of output by pressing

the spacebar. Press q to exit out of displaying the current item.

Punctuation and Comments

• Semicolon (;) at the end of a command suppresses the display of the

result
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• Commas and semicolons can be used to place multiple commands

on one line, with commas producing display of results, semicolons

supressing

• Percent sign (%) begins a comment, with all text up to the next line

ignored by Matlab

• Three periods (...) at the end of a command indicates that the com-

mand continues on the next line. A continuation cannot be given in

the middle of a variable name.

>> x=-13; y = 5*x, z = x^2+y

y =

-65

z =

104

>> who

Your variables are:

x y z

>> whos

Name Size Bytes Class Attributes

x 1x1 8 double

y 1x1 8 double

z 1x1 8 double

1.4 Basic Mathematical Functions

Matlab supports many mathematical functions, most of which are used

in the same way you write them mathematically.

Elementary math functions (enter help elfun for a more complete list):
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abs(x) Absolute value |x|
sign(x) Sign, returns -1 if x < 0, 0 if x = 0, 1 if x > 0

exp(x) Exponential ex

log(x) Natural logarithm lnx

log10(x) Common (base 10) logarithm log10x

sqrt(x) Square root
√
x

round(x) Round to the nearest integer. For example, round(17/5) is

3.

fix(x) Round toward zero. For example, fix(13/5) is 2.

ceil(x) Round toward infinity. For example, ceil(11/5) is 3.

floor(x) Round toward minus infinity. For example, floor(-9/4) is -3.

rem(x,y) Remainder of x/y. For example, rem(72,5) is 2. Also called

the modulus function.

Information about these functions is displayed by the command help

function. For example:

>> help sqrt

SQRT Square root.

SQRT(X) is the square root of the elements of X. Complex

results are produced if X is not positive.

See also SQRTM.

Matlab contains also a number of functions for performing computations

which require the use of logarithms, trigonometric and hyperbolic math

functions see Table 1.4.
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Table 1.4: Trigonometric and hyperbolic functions.

Function Description

sin(x) Computes the sine of x, where x is in radians.

cos(x) Computes the cosine of x, where x is in radians

tan(x) Computes the tangent of x, where x is in radians.

asin(x) Computes the arcsine or inverse sine of x, where x must be between 1 and 1.

acos(x) Computes the arccosine or inverse cosine of x, where x must be between 1 and 1.

atan(x) Computes the arctangent or inverse tangent of x.

atan2(y,x) Computes the arctangent or inverse tangent of the value y/x.

sinh(x) Computes the hyperbolic sine of x, which is equal to ex−e−x

2
.

cosh(x) Computes the hyperbolic cosine of x, which is equal to ex+e−x

2
.

tanh(x) Computes the hyperbolic tangent of x, which is equal to sinh(x)
cosh(x)

.

asinh(x) Computes the inverse hyperbolic sine of x, which is equal to ln
(
x+
√
x2 + 1

)
.

acosh(x) Computes the inverse hyperbolic cosine of x, which is equal to ln
(
x+
√
x2 − 1

)
.

atanh(x) Computes the inverse hyperbolic tangent of x, which is equal to ln
√

x+1
x−1

, for |x| ≤ 1.

Displaying Values and Text

There are three ways to display values and text in Matlab, to be described

in this section:

1. By entering the variable name at the Matlab prompt, without a

semicolon.

2. By use of the command disp.

3. By use of the command fprintf.

• From the prompt: As demonstrated in previous examples, by entering

a variable name, an assignment statement, or an expression at the

Matlab prompt, without a semicolon, the result will be displayed,

proceeded by the variable name (or by ans if only an expression was

entered). For example:

>> temp = 39

temp =

39

• disp: There are two general forms of the command disp that are
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useful in displaying results and annotating them with units or other

information:

1. disp(variable): Displays value of variable without displaying the

variable name.

2. disp(string): Displays string by stripping off the single quotes and

echoing the characters between the quotes.

String: A group of keyboard characters enclosed in single quote marks

(’). The quote marks indicate that the enclosed characters are to represent

ASCII text.

>> temp = 39;

>> disp(temp); disp(’degrees C’)

39

degrees C

Note that the two disp commands were entered on the same line so that

they would be executed together.

• fprintf One of the weaknesses of Matlab is its lack of good facilities

for formatting output for display or printing. A function providing

some of the needed capability is fprintf. This function is similar to

the function of the same name in the ANSI C language, so if you are

familiar with C, you will be familiar with this command. The fprintf

function provides more control over the display than is provided with

disp. In addition to providing the display of variable values and

text, it can be used to control the format to be used in the display,

including the specification to skip to a new line. The general form of

this command is:

fprintf(’format string’, list of variables)
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The format string contains the text to be displayed (in the form of a

character string enclosed in single quotes) and it may also contain format

specifiers to control how the variables listed are embedded in the format

string. The format specifiers include:

%w.df Display as fixed point or decimal notation (defaults to short),

with a width of w characters (including the decimal point and possible

minus sign, with d decimal places. Spaces are filled in from the left if

necessary. Set d to 0 if you don’t want any decimal places, for example

%5.0f. Include leading zeros if you want leading zeroes in the display, for

example %06.0f.

%w.de Display using scientific notation (defaults to short e), with a

width of w characters (including the decimal point, a possible minus sign,

and five for the exponent), with d digits in the mantissa after the decimal

point. The mantissa is always adjusted to be less than 1.

%w.dg Display using the shorter of tt short or short e format, with

width w and d decimal places.

\n Newline (skip to beginning of next line)

The w.d width specifiers are optional. If they are left out, default values

are used. Examples:

>> fprintf(’The temperature is %f degrees F \n’, temp)

The temperature is 39.000000 degrees C

>> fprintf(The temperature is %4.1f degrees F \n, temp)

The temperature is 39.0 degrees C

16 CHAPTER 1. MATLAB TECHNICAL COMPUTING ENVIRONMENT



Chapter 2

Arrays

2.1 Arrays

An array is a list of numbers arranged in rows and/or columns. A one-

dimensional array is a row or a column of numbers and a two-dimensional

array has a set of numbers arranged in rows and columns. An array

operation is performed element-by-element.

2.1.1 Row Vector

A vector is a row or column of elements.

In a row vector, the elements are entered with a space or a comma between

the elements inside the square brackets. For example, x = [7− 12− 58].

>> x = [7 -1 2 -5 8]

x =

7 -1 2 -5 8

2.1.2 Column Vector

In a column vector, the elements are entered with a semicolon between the

elements inside the square brackets. For example, x = [7;−1; 2;−5; 8].

17
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>> x = [7; -1; 2; -5; 8]

x =

7

-1

2

-5

8

2.1.3 Matrix

A matrix is a two-dimensional array which has numbers in rows and

columns. A matrix is entered row-wise with consecutive elements of a

row separated by a space or a comma, and the rows separated by semi-

colons or carriage returns. The entire matrix is enclosed within square

brackets. The elements of the matrix may be real numbers or complex

numbers. For example, to enter the matrix,

A =


2 4 3

−1 0 1

2 3 4


The MATLAB input command is

>> A = [2 4 3;-1 0 1;2 3 4]

A =

2 4 3

-1 0 1

2 3 4
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2.1.4 Addressing Arrays

A colon can be used in Matlab to address a range of elements in a vector

or a matrix.

2.1.5 Colon notation:

Addresses a block of elements

The format for colon notation is:

(start:increment:end)

where start is the starting index, increment is the amount to add to each

successive index, and end is the ending index, where start, increment, and

end must be integers. The increment can be negative, but negative indices

are not allowed to be generated. If the increment is to be 1, a shortened

form of the notation may be used:

(start:end)

>> y = 0:2:10

y =

0 2 4 6 8 10

>> x = 1:7

x =

1 2 3 4 5 6 7
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2.1.6 The linspace and logspace Functions

? linspace: This function generates a vector of uniformly incremented val-

ues, but instead of specifying the increment, the number of values desired

is specified. This function has the form:

linspace(start,end,number)

The increment is computed internally, having the value:

increment =
end− start

number − 1

For example:

>> x=linspace(0,pi,11)

x =

Columns 1 through 7

0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11

2.1991 2.5133 2.8274 3.1416

In this example:

increment =
π

11− 1
= 0.1π

? logspace: This function generates logarithmically spaced values and has

the form:

logspace(start exponent,end exponent,number)
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To create a vector starting at 100 = 1, ending at 102 = 100 and having 11

values.

>> logspace(0,2,11)

ans =

Columns 1 through 7

1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489

Columns 8 through 11

25.1189 39.8107 63.0957 100.0000

Colon for a vector

V(:) refers to all the elements of the vector V (either a row or a column

vector).

V(m:n) refers to elements m through n of the vector V.

For instance,

>> V = [2 5 -1 11 8 4 7 3 11];

>> u = V (2:8) % 2:8 means ’’start with 2 and count up to 8.’’

u =

5 -1 11 8 4 7 3

>> w = V (4:end) % 4:end means ’’start with 4 and count up

% to the end of the vector.’’

22 CHAPTER 2. ARRAYS

w =

11 8 4 7 3 11

>> V(3:-1:1) % 3:-1:1 means ’’start with 3 and count

% down to 1.’’

ans =

-1 5 2

>> V(2:2:7) % 2:2:7 means ’’start with 2, count up by 2,

% and stop at 7.’’

ans =

5 11 4

Colon for a matrix

Table 2.1 gives the use of a colon in addressing arrays in a matrix.

Table 2.1: Colon use for a matrix.
Command Description

A(:, n) Refers to the elements in all the rows of a column n of the matrix A.

A(n, :) Refers to the elements in all the columns of row n of the matrix A.

A(:,m : n) Refers to the elements in all the rows between columns m and n of the matrix A.

A(m : n, :) Refers to the elements in all the columns between rows m and n of the matrix A.

A(m : n, p : q) Refers to the elements in rows m through n and columns p through q of the matrix A.
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2.2 Adding Elements to a Vector or a Matrix

A variable that exists as a vector or a matrix can be changed by adding

elements to it. Addition of elements is done by assigning values of the

additional elements, or by appending existing variables. Rows and/or

columns can be added to an existing matrix by assigning values to the

new rows or columns.

>> S = [1 3 5 7]

S =

1 3 5 7

>> S(6) = -1

S =

1 3 5 7 0 -1

>> A=[1 2 3;2 -1 4;0 2 1]

A =

1 2 3

2 -1 4

0 2 1

>> A(4,1) = 5
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A =

1 2 3

2 -1 4

0 2 1

5 0 0

>> A(1,7) = 7

A =

1 2 3 0 0 0 7

2 -1 4 0 0 0 0

0 2 1 0 0 0 0

5 0 0 0 0 0 0

2.3 Deleting Elements

An element or a range of elements of an existing variable can be deleted

by reassigning blanks to these elements. This is done simply by the use

of square brackets with nothing typed in between them.

>> t = [1 3 5 -1 0 5]

t =

1 3 5 -1 0 5

>> t(2) = []
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t =

1 5 -1 0 5

>> B=[1 2 3;2 -1 4;0 2 1]

B =

1 2 3

2 -1 4

0 2 1

>> B(1,:) = []

B =

2 -1 4

0 2 1

2.4 Built-in Functions

Some of the built-in functions available in Matlab for managing and han-

dling arrays as listed in Table 5.4.

Table 2.2: Built-in functions for handling arrays.

Function Description Example

length(A) Returns the number of >> A = [5 9 2 4];

elements in the vector A. >> length(A)

ans = 4

Continued on next page
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Table 2.2 – continued from previous page

Function Description Example

size(A) Returns a row vector [m,n] >> A = [2 3 0 8 11;6 17 5 7 1]

where m and n are the size A =

m× n of the array A. 2 3 0 8 11

6 17 5 7 1

>> size(A)

ans =

2 5

reshape(A, m, n) Rearrange a matrix A that >> A = [3 1 4;9 0 7]

has r rows and s columns to A =

have m rows and n columns. 3 1 4

r times s must be equal to m times n. 9 0 7

>> B = reshape(A, 3, 2)

B =

3 0

9 4

1 7

diag(v) When v is a vector, creates a >> v = [3 2 1];

square matrix with the >> A = diag(v)

elements of v in the diagonal A =

3 0 0

0 2 0

0 0 1

diag(A) When A is a matrix, creates >> A = [1 8 3;4 2 6;7 8 3]

a vector from the diagonal >> A =

elements of A. 1 8 3

4 2 6

7 8 3

>> ve = diag(A)

ve =

1

2

3
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2.5 Operations With Arrays

We consider here matrices that have more than one row and more than

one column.

2.5.1 Identity Matrix

An identity matrix is a square matrix in which all the diagonal elements

are 1’s, and the remaining elements are 0’s. If a matrix A is square, then

it can be multiplied by the identity matrix, I, from the left or from the

right:

AI = IA = A

To generate an identity matrix in Matlab:

eye(n) Returns an n× n identity matrix.

eye(m, n) Returns an m × n matrix with ones on the main diagonal and

zeros elsewhere.

eye(size(a)) Returns a matrix with ones on the main diagonal and zeros

elsewhere that is the same size as A.

>> I = eye(3)

I =

1 0 0

0 1 0

0 0 1

>> I = eye(3,2)

I =
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1 0

0 1

0 0

2.5.2 Addition and Subtraction of Matrices

The addition (the sum) or the subtraction (the difference) of the two

arrays is obtained by adding or subtracting their corresponding elements.

These operations are performed with arrays of identical size (same number

of rows and columns).

For example, if A and B are two arrays (2× 3 matrices).

A =

(
a11 a12 a13

a21 a22 a23

)
, B =

(
b11 b12 b13

b21 b22 b23

)
Then,

A+B =

(
a11 + b11 a12 + b12 a13 + a13

a21 + b21 a22 + b22 a23 + b31

)
.

>> A= [1 2 3;0 1 2;2 5 7]

A =

1 2 3

0 1 2

2 5 7

>> B = [0 1 2;-1 2 3;1 2 3]

B =

0 1 2

-1 2 3
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1 2 3

>> A + B

ans =

1 3 5

-1 3 5

3 7 10

2.5.3 Array Multiplication

The value in position ci,j of the product C of two matrices, A and B, is

ci,j =
n∑

k=1

ai,kbk,j.

>> A= [1 2 3;0 1 2;2 5 7];

>> B = [0 1 2;-1 2 3;1 2 3];

>> C = A*B

C =

1 11 17

1 6 9

2 26 40

2.5.4 Transpose

The transpose of a matrix is a new matrix in which the rows of the original

matrix are the columns of the new matrix. The transpose of a given matrix

A is denoted by AT . In Matlab, the transpose of the matrix A is denoted

by A
′
.
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>> A= [1 2 3;0 1 2;2 5 7];

>> A_1 = A’

A_1 =

1 0 2

2 1 5

3 2 7

2.5.5 Determinant

A determinant is a scalar computed from the entries in a square matrix.

For a 2× 2 matrix A, the determinant is

|A| = a11a22 − a21a12

Matlab will compute the determinant of a matrix using the det function:

det(A): Computes the determinant of a square matrix A.

>> A= [1 2 3;0 1 2;2 5 7];

>> det(A)

ans =

-1

2.5.6 Inverse of a Matrix

The matrix B is the inverse of the matrix A when the two matrices are

multiplied and the product is an identity matrix. Both matrices A and B

must be square and the order of multiplication can be AB or BA.

AB = BA = I
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To generate the inverse of the matrix in Matlab, we use inv(A)

>> A = [1 0 3;-1 2 5;2 4 5]

A =

1 0 3

-1 2 5

2 4 5

>> inv(A)

ans =

0.2941 -0.3529 0.1765

-0.4412 0.0294 0.2353

0.2353 0.1176 -0.0588

2.6 Sets of Linear Equations

Consider the square system of n linear equations with n unknowns x1, . . . , xn,

a11x1 + a12x2 + · · ·+ a1nxn = y1,

a21x1 + a22x2 + · · ·+ a2nxn = y2,

. . .

an1x1 + an2x2 + · · ·+ annxn = yn,

or more compactly

Ax = y, whereA is n× n, x and y are n× 1. (2.1)

32 CHAPTER 2. ARRAYS

Here

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an1 · · · ann

 , y =


y1

y2
...

yn

 , x =


x1

x2
...

xn

 .

We already met the matrix function inv. This function computes the

inverse of a non-singular matrix. One solution would be therefore to

write simply x = inv(A)*b. Since inverting a matrix is in fact equivalent

to solving n times a system of n linear equations with the n columns of

the identity matrix playing the role of the right hand sides y, it is clear

that inversion of A is usually too expensive in terms of computer time.

Matlab can solve the system in one statement: x=A \ y as we will see

later.

2.6.1 Array Division

Matlab has two types of array division, which are the left division and the

right division.

Left Division

The left division is used to solve the matrix equation Ax = b where x

and b are column vectors. Multiplying both sides of this equation by the

inverse of A, A1, we have

A−1Ax = A−1b;

Ix = A−1b;

x = A−1b

In Matlab, the above equation is written by using the left division char-

acter:

x = A\b
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>> A= [1 2 3;0 1 2;2 5 7];

>> b = [1 2 3]’

b =

1

2

3

>> A\b

ans =

-2

0

1

>> inv(A)*b

ans =

-2

0

1

Right Division

The right division is used to solve the matrix equation xA = b where

x and b are row vectors. Multiplying both sides of this equation by the
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inverse of A, A1, we have

xAA−1 = bA−1;

x = bA−1

In Matlab, this equation is written by using the right division character:

x = b/A

>> A= [1 2 3;0 1 2;2 5 7];

>> b = [1 2 3]

b =

1 2 3

>> b/A

ans =

1 0 0

2.7 Eigenvalues and Eigenvectors

Consider the following equation:

Ax = λx, (2.2)

where A is an n× n square matrix, x is a column vector with n rows and

λ is a scalar.

The values of λ for which x are non-zero are called the eigenvalues of the

matrix A, and the corresponding values of x are called the eigenvectors of
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the matrix A.

Equation (2.2) can also be used to find the following equation:

(A− λI)x = 0, (2.3)

where I is an n × n identity matrix. Equation (2.3) corresponding to

a set of homogeneous equations and has non-trivial solutions only if the

determinant is equal to zero, or

|A− λI|x = 0, (2.4)

Equation (2.4) is known as the characteristic equation of the matrix A.

The solution to Eq.(2.4) gives the eigenvalues of the matrix A.

Matlab determines both the eigenvalues and eigenvectors for a matrix A

using the command eig(A).

eig(A): Computes a column vector containing the eigenvalues of A.

[V, D] = eig(A): Computes a square matrix V containing the eigenvectors

of A as columns and a square matrix D containing the eigenvlaues (λ) of

A on the diagonal.

>> A=[1 2 -1;2 0 3;1 2 3]

A =

1 2 -1

2 0 3

1 2 3

>> eig(A)

ans =
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4.5456

1.6231

-2.1687

>> [V,D] = eig(A)

V =

-0.0973 -0.8256 0.5673

-0.5777 0.0247 -0.7990

-0.8104 0.5637 0.1994

D =

4.5456 0 0

0 1.6231 0

0 0 -2.1687

Triangular Factorization or Lower-Upper Factorization

Triangular or lower-upper factorization expresses a square matrix as the

product of two triangular matricesa lower triangular matrix and an upper

triangular matrix. The lu function in Matlab computes the LU factoriza-

tion.

[L, U] = lu(A): Computes a permuted lower triangular factor in L and an

upper triangular factor in U such that the product of L and U is equal to

A.

The solution to Ax = b is obtained with matrix division

x = A−1b = U−1L−1b.



2.7. EIGENVALUES AND EIGENVECTORS 37

>> A=[1 2 -1;2 0 3;1 2 3]

A =

1 2 -1

2 0 3

1 2 3

>> b=[1 2 3]’

b =

1

2

3

>> [L,U] = lu(A)

L =

0.5000 1.0000 0

1.0000 0 0

0.5000 1.0000 1.0000

U =

2.0000 0 3.0000

0 2.0000 -2.5000
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0 0 4.0000

>> x = inv(U)*inv(L)*b

x =

0.2500

0.6250

0.5000

QR Factorization

The QR factorization method factors a matrix A into the product of an

orthonormal matrix and an upper-triangular matrix. The qr function is

used to perform the QR factorization in Matlab.

[Q, R] = qr(A): Computes the values of Q and R such that A = QR.

Q will be an orthonormal matrix, and R will be an upper triangular

matrix.

As LU factorization, we can use QR in solving the system Ax = b as

follows x = R−1Q−1b.

Note that: for a matrix A of size m× n, the size of Q is m×m, and the

size of R is m× n.

>> A=[1 2 -1;2 0 3;1 2 3]

A =

1 2 -1

2 0 3

1 2 3
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>> b=[1 2 3]’

b =

1

2

3

>> [Q,R] = qr(A)

Q =

-0.4082 0.5774 -0.7071

-0.8165 -0.5774 -0.0000

-0.4082 0.5774 0.7071

R =

-2.4495 -1.6330 -3.2660

0 2.3094 -0.5774

0 0 2.8284

>> x = inv(R)*inv(Q)*b

x =

0.2500

0.6250
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0.5000

2.8 Element-By-Element Operations

Element-by-element operations can only be done with arrays of the same

size. Element-by-element multiplication, division and exponentiation of

two vectors or matrices is entered in Matlab by typing a period in front

of the arithmetic operator. Table 2.3 lists these operations.

Table 2.3: Element-by-element operations

Arithmetic operators

Matrix operators Array operators

+ Addition + Addition

- Subtraction - Subtraction

* Multiplication .* Array multiplication

ˆ Exponentiation .ˆ Array exponentiation

/ Right division ./ Array right division

\ Left division .\ Array left division

>> A=[1 2 -1;0 1 1;2 1 3];

>> B=[2 3 -1;1 2 4;1 2 4];

>> A.*B

ans =

2 6 1

0 2 4

2 2 12

>> A.^2

ans =
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1 4 1

0 1 1

4 1 9

>> A./B

ans =

0.5000 0.6667 1.0000

0 0.5000 0.2500

2.0000 0.5000 0.7500

>> A.\B

ans =

2.0000 1.5000 1.0000

Inf 2.0000 4.0000

0.5000 2.0000 1.3333

>> b = [1 0 3]’

b =

1

0

3

42 CHAPTER 2. ARRAYS

>> A.*b

Error using .*

Matrix dimensions must agree.

>> A*b

ans =

-2

3

11
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2.8.1 Built-in Functions for Arrays

Table 2.4 lists some of the many built-in functions available in Matlab for

analysing arrays.

Table 2.4: Matlab built-in array functions

Function Description Example

mean(A) If A is a vector, returns the mean >> A = [3 7 2 16];

value of the elements >> mean(A) =

ans =

7

[d, n] = max(A) If A is a vector, d is the largest >> A = [3 7 2 16 9 5 18 13 0 4];

element in A, n is the position of >> [d, n] = max(A)

the element (the first if several d = 18

have the max value). n = 7

[d, n] = min(A) The same as [d, n] = max(A), >> A = [3 7 2 16 9 5 18 13 0 4];

but for the smallest element. >> [d, n] = min(A)

d = 0

n = 9

sum(A) If A is a vector, returns the sum, >> A = [3 7 2 16];

of the elements of the vector. >> sum(A)

ans =

28

sort(A) If A is a vector, arranges the >> A = [3 7 2 16];

elements of the vector in. >> sort(A)

ascending order. ans =

2 3 7 16

median(A) If A is a vector, returns the >> A = [3 7 2 16];

median value of the elements of. >> median(A)

the vector ans =

5

std(A) If A is a vector, returns the >> A = [3 7 2 16];

standard deviation of the. >> std(A)

elements of the vector. ans =

6.3770
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2.9 Random Numbers Generation

There are many physical processes and engineering applications that re-

quire the use of random numbers in the development of a solution.

Matlab has two commands rand and randn that can be used to assign

random numbers to variables.

The rand command: The rand command generates uniformly distributed

over the interval [0, 1]. The command can be used to assign these numbers

to a scalar, a vector or a matrix as shown in Table 2.5.

Table 2.5: The rand command
Function Description Example

rand Generates a single random >> rand

number between 0 and 1. >> ans =

0.8147

rand(1, n) Generates an n elements row >> a = rand(1,3)

vector of random numbers >> a =

between 0 and 1. 0.9058 0.1270 0.9134

rand(n) Generates an n× n matrix >> b = rand(3)

with random numbers >> b =

between 0 and 1. 0.6324 0.5469 0.1576

0.0975 0.9575 0.9706

0.2785 0.9649 0.9572

rand(m,n) Generates an m× n matrix >> c = rand(2,3)

with random numbers >> c =

between 0 and 1. 0.4854 0.1419 0.9157

0.8003 0.4218 0.7922

2.9.1 The Random Command

Matlab will generate Gaussian values with a mean of zero and a variance

of 1.0 if a normal distribution is specified. The Matlab functions for

generating Gaussian values are as follows:

randn(n): Generates an n × n matrix containing Gaussian (or normal)
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random numbers with a mean of 0 and a variance of 1.

randn(m, n): Generates an m×n matrix containing Gaussian (or normal)

random numbers with a mean of 0 and a variance of 1.
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Chapter 3

Introduction to Graphics

A picture, it is said, is worth a thousand words. Matlab has a powerful

graphics system for presenting and visualizing data, which is reasonably

easy to use. (Most of the figures in this book have been generated by

Matlab.)

This chapter introduces Matlab’s high-level 2-D and 3-D plotting facil-

ities. Low level features, such as handle graphics, are discussed later in

this chapter.

3.1 Basic 2-D Graphs

Graphs (in 2-D) are drawn with the plot statement. In its simplest form,

it takes a single vector argument as in plot(y). Matlab allows graphs to be

created quickly and conveniently. For example, to create a graph of the t

and v = exp(t) arrays, we enter

>> t = linspace(1,10,20);

>> v = exp(t);

>> plot(t,v)

Axes are automatically scaled and drawn to include the minimum and

maximum data points.

47
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Table 3.1: Specifiers for colors, symbols, and line types.

Colors Symbols Line Types

Blue b Point · Solid -

Green g Circle o Dotted :

Red r X-mark x Dashdot -.

Cyan c Plus + Dashed –

Magenta m Star *

Yellow y Square s

Black k Diamond d

White w Triangle(down)

Triangle(up)

Triangle(left) <

Triangle(right) >

Pentagram p

Hexagram h

The plot command displays a solid thin blue line by default. If you want

to plot each point with a symbol, you can include a specifier enclosed in

single quotes in the plot function. Table 3.1 lists the available specifiers.

For example, if you want to use open circles enter

>> plot(t, v, ’o’)
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You can also combine several specifiers. For example, if you want to use

square green markers connected by green dashed lines, you could enter

>> plot(t, v, ’s--g’)
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You can also control the line width as well as the markers size and its

edge and face (i.e., interior) colors. For example, the following command

uses a heavier (2-point), dashed, cyan line to connect larger (10-point)

diamond-shaped markers with black edges and magenta faces:

>> plot(t,v,’--dc’,’LineWidth’,2,...
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’MarkerSize’,10,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’m’)
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Note that the default line width is 1 point. For the markers, the default

size is 6 point with blue edge color and no face color.

Matlab allows you to display more than one data set on the same

plot. For example, an alternative way to connect each data marker with

a straight line would be to type

>> plot(t, v, t, v, ’o’)

3.1.1 Labels

Graphs may be labeled with the following statements:

>> gtext(’text’)

writes a string (’text’) in the graph window. gtext puts a cross-hair in

the graph window and waits for a mouse button or keyboard key to be

pressed. The cross-hair can be positioned with the mouse or the arrow

keys.
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Text may also be placed on a graph interactively with Tools − > Edit

Plot from the figure window.

>> grid

adds/removes grid lines to/from the current graph. The grid state may

be toggled.

>> text(t, v, ’text’)

If t and v are vectors, the text is written at each point. If the text is an

indexed list, successive points are labeled with corresponding rows of the

text.

>> title(’text’)

writes the text as a title on top of the graph.

>> xlabel(’horizontal’)

labels the x-axis.

>> ylabel(’vertical’)

labels the y-axis.

>>legend(string1,string2, ..... ,pos)
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The legend command places a legend on the plot. The legend shows a

sample of the line type of each graph that is plotted, and places a label,

specified by the user, beside the line sample.

The strings are the labels that are placed next to the line sample. Their

order corresponds to the order in which the graphs were created. The pos

is an optional number that specifies where in the figure the legend is to

be placed. The options are:

• pos = -1 Places the legend outside the axes boundaries on the right

side.

• pos = 0 Places the legend inside the axes boundaries in a location

that interferes the least with the graphs.

• pos = 1 Places the legend at the upper-right corner of the plot (de-

fault).

• pos = 2 Places the legend at the upper-left corner of the plot.

• pos = 3 Places the legend at the lower-left corner of the plot.

• pos = 4 Places the legend at the lower-right corner of the plot.

>> t = linspace(1,10,20);

>> v = exp(t);

>> plot(t, v)

>> text(t, v, ’s’)

>> title(’Plot of v versus t’)

>> xlabel(’Values of t’)

>> ylabel(’Values of v’)

>> gtext( ’X marks the spot’)

>> grid

>> legend(’v’,-1) % left figure

>> legend(’v’,2) % right figure
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3.1.2 Multiple plots on the same axes

There are at least two ways of drawing multiple plots on the same set

of axes (which may however be rescaled if the new data falls outside the

range of the previous data).

1- The easiest way is simply to use hold to keep the current plot on the

axes. All subsequent plots are added to the axes until hold is released,

either with hold off , or just hold, which toggles the hold state.

>> plot(t, v)

>> hold on
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>> plot(t, v, ’o’)

>> hold off

2- The second way is to use plot with multiple arguments, e.g.

>> plot(x1, y1, x2, y2, x3, y3, ... )

plots the (vector) pairs (x1, y1), (x2, y2), etc. The advantage of this

method is that the vector pairs may have different lengths. Matlab auto-

matically selects a different color for each pair.

>> t = linspace(0,pi,10);

>> v = cos(t);

>> t1 = linspace(0,2*pi,20);

>> v1 = sin(t1);

>> plot(t, v,t1,v1)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3.1.3 Axis limits

Whenever you draw a graph with Matlab it automatically scales the axis

limits to fit the data. You can override this with

>> axis( [xmin, xmax, ymin, ymax] )
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which sets the scaling on the current plot, i.e. draw the graph first, then

reset the axis limits.

If you want to specify one of the minimum or maximum of a set of axis

limits, but want MATLAB to autoscale the other, use Inf or -Inf for the

autoscaled limit.

You can return to the default of automatic axis scaling with

>> axis auto

3.1.4 Multiple plots in a figure: subplot

You can show a number of plots in the same figure window with the

subplot function. It looks a little curious at first, but its quite easy to get

the hang of it.

The statement

>> subplot(m, n, p)

divides the figure window into m×n small sets of axes, and selects the pth

set for the current plot (numbered by row from the left of the top row).

For example, the following statements produce the four plots shown in

Figure 3.1

>> t = 0:pi/50:10*pi;

>> subplot(1,2,1);plot(sin(t),cos(t))

>> axis square

>> title(’(b)’)

>> title(’(a)’)

>> subplot(1,2,2);plot(sin(t),exp(t))

>> title(’(b)’)
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Figure 3.1: A two-pane plot of (a) and (b)
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3.1.5 figure, clf and cla

figure(h), where h is an integer, creates a new figure window, or makes

figure h the current figure. Subsequent plots are drawn in the current

figure. h is called the handle of the figure. Handle graphics is discussed

further in a later section of this chapter.

clf clears the current figure window. It also resets all properties asso-

ciated with the axes, such as the hold state and the axis state.

cla deletes all plots and text from the current axes, i.e. leaves only the x-

and y-axes and their associated information.

3.1.6 Logarithmic plots

The command

>> semilogy(x, y)

plots y with a log10 scale and x with a linear scale. For example, the

statements
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>> x = 0:.01:4;

semilogy(x, exp(x)), grid

produce the graph in Figure 3.2. Equal increments along the y-axis rep-

resent multiples of powers of 10. So, starting from the bottom, the grid

lines are drawn at 1, 2, 3,..., 10, 20, 30 . . . , 100,.... Incidentally, the

graph of ex on these axes is a straight line, because the equation y = ex

transforms into a linear equation when you take logs of both sides.

Figure 3.2: A logarithmic plot
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3.1.7 Polar plots

The point (x, y) in cartesian coordinates is represented by the point (θ, r)

in polar coordinates, where

x = rcos(θ)

y = rsin(θ)

and θ varies between 0 and 2π radians (360o).

The command

>> polar(theta, r)
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generates a polar plot of the points with angles in theta and magnitudes

in r.

As an example, the statements

>> x = 0:pi/40:2*pi;

>> polar(x, sin(2*x)),grid

Figure 3.3: Polar plot of θ against sin(2θ)

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

3.2 3-D plots

Matlab has a variety of functions for displaying and visualizing data in

3-D, either as lines in 3-D, or as various types of surfaces. This section

provides a brief overview.

The function plot3 is the 3-D version of plot. The command

>> plot3(x, y, z)

draws a 2-D projection of a line in 3-D through the points whose co-

ordinates are the elements of the vectors x, y and z. For example, the

command
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>>t = 0:pi/50:10*pi;

>>plot3(exp(-0.02*t).*sin(t), exp(-0.02*t).*cos(t),t)

>>xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)

Figure 3.4: Examples of plot3
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3.2.1 Animated 3-D plots with comet3

The function comet3 is similar to plot3 except that it draws with a moving

’comet head.’ Use comet3 to animate the helix in Figure 3.4.

3.3 Other cool graphics functions

Here are more examples of interesting graphics functions. With each func-

tion a sample script and graph is shown. The list is by no means exhaus-

tive and is meant to whet your appetite for more! You are encouraged to

consult the list of graphics functions in the online Matlab FUNCTION

REFERENCE. Each entry has excellent examples.

(a) area

>> x = 0:0.1:1.5;

>> area(x’, [x.^2’ exp(x)’ exp(x.^2)’])
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(b) bar

>> x = 0:pi/20:pi;

>> bar(x,sin(x))
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(c) hist

>> x = -20:120;

>> y = 50+20*randn(1,100000);

>> hist(y,x)
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(d) pie

>> pie(rand(1,10))
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(e) stem3

>> t = 0:pi/50:2*pi;

>> r = exp(-0.05*t);

>> stem3(r.*sin(t), r.*cos(t),t)
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Chapter 4

POLYNOMIALS

A polynomial is a function of a single variable that can be expressed in

the following form:

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + ....+ an−1x

1 + an,

where the variable is x and the coefficients of the polynomial are repre-

sented by the values a0, a1, ... and so on. The degree of a polynomial is

equal to the largest value used as an exponent.

The polynomial x4+2x3−13x2−14x+24 is represented in Matlab by the

array [1, 2,−13,−14, 24], i.e., by the coefficients of the polynomial starting

with the highest power and ending with the constant term. If any power

is missing from the polynomial its coefficient must appear in the array as

a zero. Here are some of the things Matlab can do with polynomials.

4.1 Roots of a Polynomial

We can extract the roots of a polynomial. To calculate the roots of a poly-

nomial given the coefficients, enter the coefficients in an array in descend-

ing order. Be sure to include zeroes where appropriate. The following

command will find the roots of a polynomial:

>> p=[1 2 -13 -14 24];
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>> r=roots(p)

r =

-4.0000

3.0000

-2.0000

1.0000

Note: The coefficients could be entered directly in the roots command.

The same answer as above would be obtained using the following expres-

sion.

>> > r = roots([1 2 -13 -14 24])

r =

-4.0000

3.0000

-2.0000

1.0000

4.2 Find the polynomial from the roots

If you know that the roots of a polynomial are 1, 2, and 3, then you can

find the polynomial in Matlab’s array form this way

>> r=[1,2,3];

>> p=poly(r)

p =
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1 -6 11 -6

4.3 Multiply Polynomials

The command conv multiplies two polynomial coefficient arrays and re-

turns the coefficient array of their product.

>> a=[1,0,1];

>> b=[1,0,-1];

>> c=conv(a,b)

c =

1 0 0 0 -1

4.4 Divide Polynomials

Matlab can do it with the commanddeconv, giving you the quotient and

the remainder.

>> a=[1,1,1]; % a=x^2+x+1

>> b=[1,1]; % b=x+1

% now divide b into a finding the quotient and remainder

>> [q,r]=deconv(a,b)

q =

1 0

r =
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0 0 1

This means that q = x+ 0 = x and r = 0x2 + 0x+ 1 = 1, so

x2 + x+ 1

x+ 1
= x+

1

x+ 1
.

4.5 First Derivative

Matlab can take a polynomial array and return the polynomial array of

its derivative:

>> a=[1,1,1,1]; % x^3 + x^2 + x + 1

>> ap=polyder(a)

ap =

3 2 1

4.6 Evaluate a Polynomial

If you have an array of x-values and you want to evaluate a polynomial

at each one, you can use the command ployval(p,x) as follows:

% define the polynomial

>> a=[1 2 -13 -14 24];

% load the x-values

>> x=-5:.01:5;

% evaluate the polynomial

>> y=polyval(a,x);

% plot it

>> plot(x,y)
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4.7 Fitting Data to a Polynomial

If you have some data in the form of arrays (x, y), Matlab will do a least-

squares fit of a polynomial of any order you choose to this data i.e, to

determining the coefficients of a polynomial that is the best fit of a given

data, you can use the Matlab commandployfit.

The structure of the command is polyfit(x, y, n), where x, y are the data

vectors and n is the order of the polynomial for which the least-squares fit

is desired. In the next example we will let the data be the sine function

between 0 and π and we will fit a polynomial of order 4 to it. Then we

will plot the two functions on the same frame to see if the fit is any good.

>> x=linspace(0,pi,50);

% make a sine function with 1% random error on it

>> f=sin(x)+.01*rand(1,length(x));

% fit to the data

>> coeff=polyfit(x,f,4)

coeff =
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0.0379 -0.2374 0.0591 0.9813 0.0074

% evaluate the fit

>> g=polyval(coeff,x);

% plot fit and data together

>> plot(x,f,’r*’,x,g,’b-’)
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Sample Problem 4.1. Fit the following data describing the accumulation

of species A over time to a second order polynomial, then by using this

polynomial, predict the accumulation at 15 hours.

Time(hr) 1 3 5 7 8 10

Mass A acc. 9 55 141 267 345 531

Solution:

First, input the data into vectors, let:

>> a = [9, 55, 141, 267, 345, 531];

>> time = [1, 3, 5, 7, 8, 10];

Now fit the data using polyfit

>> coeff = polyfit(time,a,2)
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coeff =

5.0000 3.0000 1.0000

So, Mass A = 5× (time)2 + 3× (time) + 1

Therefore to calculate the mass A at 15 hours

>> MApred = polyval(coeff,15)

MApred =

1.1710e+03

Sample Problem 4.2. Use Matlab to fit the following vapor pressure vs

temperature data in fourth order polynomial. Then calculate the vapor

pressure when T = 100◦ C.

Temp (C) -36.7 -19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1

Pre. (kPa) 1 5 10 20 40 60 100 200 400 760

Solution:

>> vp = [ 1, 5, 10, 20, 40, 60, 100, 200, 400, 760];

>> T = [-36.7, -19.6, -11.5, -2.6, 7.6, 15.4, 26.1, 42.2, 60.6, 80.1];

>> p=polyfit(T,vp,4)

%evaluate the polynomial at T=100

pre= polyval(p,100)

p =

0.0000 0.0004 0.0360 1.6062 24.6788
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>> pre= polyval(p,100)

pre =

1.3552e+03
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Programming in Matlab

5.1 Script Files

A script is a sequence of ordinary statements and functions used at the

command prompt level. A script is invoked the command prompt level

by typing the file-name or by using the pull down menu. Scripts can also

invoke other scripts.

The commands in the Command Window cannot be saved and exe-

cuted again. Also, the Command Window is not interactive. To over-

come these difficulties, the procedure is first to create a file with a list

of commands, save it and then run the file. In this way, the commands

contained are executed in the order they are listed when the file is run.

In addition, as the need arises, one can change or modify the commands

in the file; the file can be saved and run again. The files that are used

in this fashion are known as script files. Thus, a script file is a text file

that contains a sequence of Matlab commands. Script file can be edited

(corrected and/or changed) and executed many times.

5.1.1 Creating and Saving a Script File

Any text editor can be used to create script files. In Matlab, script files are

created and edited in the Editor/ Debugger Window. This window can be
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opened from the Command Window. From the Command Window, select

File, New and then M-file. Once the window is open, the commands of

the script file are typed line by line. The commands can also be typed in

any text editor or word processor program and then copied and pasted in

the Editor/Debugger Window. The second type of M-files is the function

file. Function file enables the user to extend the basic library functions by

adding ones own computational procedures. Function M-files are expected

to return one or more results. Script files and function files may include

reference to other Matlab toolbox routines.

Matlab function file begins with a header statement of the form:

function (name of result or results) = name (argument list)

Before a script file can be executed it must be saved. All script files must

be saved with the extension ”.m”. Matlab refers to them as M-files. When

using Matlab M-files editor, the files will automatically be saved with a

”.m” extension. If any other text editor is used, the file must be saved

with the ”.m” extension, or Matlab will not be able to find and run the

script file. This is done by choosing Save As from the File menu, selecting

a location, and entering a name for the file. The names of user defined

variables, predefined variables, Matlab commands or functions should not

be used to name script files.

5.1.2 Running a Script File

A script file can be executed either by typing its name in the Command

Window and then pressing the Enter key, directly from the Editor Win-

dow by clicking on the Run icon. The file is assumed to be in the current

directory, or in the search path.
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5.1.3 Input to a Script File

There are three ways of assigning a value to a variable in a script file.

1- The variable is defined and assigned value in the script file.

2- The variable is defined and assigned value in the Command Window.

3- The variable is defined in the script file, but a specified value is

entered in the Command Window when the script file is executed.

5.2 Comparison Between Script Flies and Function

Files

understanding exactly the differences between script and function files

since, for many of the problems that they are asked to solve using Matlab,

either type of file can be used. The similarities and differences between

script and function files are summarized below.

• Both script and function files are saved with the extension .m (that

is why they are sometimes called M-files).

• The first executable line in a function file is (must be) the function

definition line.

• The variables in a function file are local. The variables in a script

file are recognized in the Command Window.

• Script files can use variables that have been defined in the workspace.

• Script files contain a sequence of Matlab commands (statements).

• Function files can accept data through input arguments and can re-

turn data through output arguments.

• When a function file is saved, the name of the file should be the same

as the name of the function.
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5.3 Anonymous and Inline Functions

5.3.1 Anonymous Functions

An anonymous function is a simple (one-line) user-defined function that

is defined without creating a separate function file (M-file). Anonymous

functions can be constructed in the Command Window, within a script

file, or inside a regular user-defined function.

An anonymous function is created by typing the following command:

name = @ (arglist) expr

where name refers to the name of the anonymous function, @ is the symbol

@, arglist a list of input arguments (independent variables) and expr is the

Mathematical expression.

A simple example is: cube = @(x)x3, which calculates the cube of the

input argument.

Once an anonymous function is defined, it can be used by typing its name

and a value for the argument (or arguments) in parentheses (see examples

that follow).

Example of an anonymous function with one independent vari-

able:

The function f(x) = ex
2

√
x2+5

can be defined (in the Command Window) as

an anonymous function for x as a scalar by:

>> FA = @ (x) exp(x^2)/sqrt(x^2+5)

FA =

@(x)exp(x^2)/sqrt(x^2+5)

If a semicolon is not typed at the end, Matlab responds by displaying the
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function. The function can then be used for different values of x, as shown

below.

>> FA(2)

ans =

18.1994

>> z = FA(3)

z =

2.1656e+03

If x is expected to be an array, with the function calculated for each

element, then the function must be modified for element-by-element cal-

culations.

>> FA = @ (x) exp(x.^2)./sqrt(x.^2+5)

FA =

@(x)exp(x.^2)./sqrt(x.^2+5)

>> FA([1 0.5 2])

ans =

1.1097 0.5604 18.1994

Example of an anonymous function with several independent
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variables:

The function f(x, y) = 2x2 − 4xy + y2 can be defined as an anonymous

function by:

>> HA = @ (x,y) 2*x^2 - 4*x*y + y^2

HA =

@(x,y)2*x^2-4*x*y+y^2

Then the anonymous function can be used for different values of x and y.

For example, typing HA(2,3) gives:

>> HA(2,3)

ans =

-7

5.3.2 Inline Functions

Similar to an anonymous function, an inline function is a simple user-

defined function that is defined without creating a separate function file

(M-file). As already mentioned, anonymous functions replace the inline

functions used in earlier versions of Matlab. Inline functions are created

with the inline command according to the following format:

name = inline(’math expression typed as a string’)

A simple example is cube = inline(’x3’), which calculates the cube of the

input argument.

Once the function is defined it can be used by typing its name and a value

for the argument (or arguments) in parentheses (see example below). For
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example, the function: f(x) = ex
2

√
x2+5

can be defined as an inline function

for x by:

>> FA=inline(’exp(x.^2)./sqrt(x.^2+5)’)

FA =

Inline function:

FA(x) = exp(x.^2)./sqrt(x.^2+5)

>> FA(2)

ans =

18.1994

>> FA([1 0.5 2])

ans =

1.1097 0.5604 18.1994

An inline function that has two or more independent variables can be

written by using the following format:

name = inline(’mathematical expression’,’arg1’,’arg2’,’arg3’)

In the format shown here the order of the arguments to be used when

calling the function is defined. If the independent variables are not listed

in the command, Matlab arranges the arguments in alphabetical order.

For example, the function f(x, y) = 2x2 − 4xy + y2 can be defined as an

inline function by
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>> HA=inline(’2*x^2-4*x*y+y^2’)

HA =

Inline function:

A(x,y) = 2*x^2-4*x*y+y^2

>> HA(2,3)

ans =

-7

>> HA=inline(’2*x^2-4*x*y+y^2’,’x’,’y’)

HA =

Inline function:

HA(x,y) = 2*x^2-4*x*y+y^2

>> HA(2,3)

ans =

-7

>> HA=inline(’2*x^2-4*x*y+y^2’,’y’,’x’) % we use y first

HA =
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Inline function:

HA(y,x) = 2*x^2-4*x*y+y^2

>> HA(2,3) % since we use y first, it means that y = 2 and x = 3

ans =

-2

5.4 The feval Command

The feval (short for ”function evaluate”) command evaluates the value

of a function for a given value (or values) of the function’s argument (or

arguments). The format of the command is

variable = feval(’function name’, argument value)

or

variable = feval(@function name, argument value)

The value that is determined by feval can be assigned to a variable, or if

the command is typed without an assignment, Matlab displays ans = and

the value of the function.

• The function can be a built-in or a user-defined function.

• If there is more than one input argument, the arguments are sepa-

rated with commas.

• If there is more than one output argument, the variables on the left-

hand side of the assignment operator are typed inside brackets and

separated with commas.
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>> feval(’sqrt’,64)

ans =

8

>> feval(@sqrt,64)

ans =

8

5.5 Relational and Logical Operators

A relational operator compares two numbers by finding whether a com-

parison statement is true or false. A logical operator examines true/false

statements and produces a result which is true or false according to the

specific operator. Relational and logical operators are used in mathemat-

ical expressions and also in combination with other commands to make

decision that control the flow of a computer program.

Matlab has six relational operators as shown in Table 5.1. Examples:

Table 5.1: Relational operators.

Relational operator Interpretation

< Less than

≤ Less than or equal

> Greater than

≥ Greater than or equal

== Equal

˜ = Not equal

>> A=1:9, B=8-A
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A =

1 2 3 4 5 6 7 8 9

B =

7 6 5 4 3 2 1 0 -1

>> tf1 = A <=3

tf1 =

1 1 1 0 0 0 0 0 0

>> tf2 = A > B

tf2 =

0 0 0 0 1 1 1 1 1

>> tf3 = (A==B)

tf3 =

0 0 0 1 0 0 0 0 0

>> tf4 = B-(A>2)
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tf4 =

7 6 4 3 2 1 0 -1 -2

• tf1 finds elements of A that are less than or equal to 3. Ones appear

in the result where A ≤ 3 and zeroes appear where A > 3.

• tf2 finds elements of A that are greater than those in B.

• tf3 finds elements of A that are equal to those in B.

• tf4 finds where A > 2 and subtracts the resulting vector from B. This

shows that since the output of logical operations are numerical arrays

of ones and zeros, they can be used in mathematical operations.

Note that = and == mean two different things: == compares two vari-

ables and returns ones where they are equal and zeros where they are not;

on the other hand, = is used to assign the output of an operation to a

variable.

The logical operators in Matlab are shown in Table 5.2. A fourth logical

Table 5.2: Logical operators.

Logical Operator Description

& And

| Or

∼ Not

operator is implemented as a function:

• xor(A,B) Exclusive or: Returns ones where either A or B is True

(nonzero); returns False (zero) where both A and B are False (zero)

or both are True (nonzero).
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Table 5.3: Logical operators.

A B ∼ A A | B A&B xor(A,B)

0 0 1 0 0 0

0 1 1 1 0 1

1 0 0 1 0 1

1 1 0 1 1 0

Definitions of the logical operators, with 0 representing False and 1 rep-

resenting True.

Examples:

>> A=1:9

A =

1 2 3 4 5 6 7 8 9

>> tf1 = A>3

tf1 =

0 0 0 1 1 1 1 1 1

>> tf2 = ~(A>3)

tf2 =

1 1 1 0 0 0 0 0 0

>> tf3 = (A>1)&(A<5)
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tf3 =

0 1 1 1 0 0 0 0 0

>> tf4 = xor((A>1),(A<5))

tf4 =

1 0 0 0 1 1 1 1 1

5.6 Relational and Logical Functions

Matlab provides several useful relational and local functions that operate

on scalars, vectors, and matrices. The following is a partial list of these

functions.

Table 5.4: Built-in functions for handling arrays.

Function Description Example

all(A) Returns 1 (true) if all elements in a >> A = [5 3 11 7 8 15];

vector A are true (non-zero). Returns 0 >> all(A)

(false) if one or more elements are false ans =

(zero). If A is a matrix, treats columns 1

1’s and 0’s. >> B = [3 6 11 4 0 13]

>> all(B)

ans =

0

any(A) Returns 1 (true) if any element in a >> A = [5 0 14 0 0 13];

vector A is true (non-zero). Returns 0 >> any(A)

(false) if all elements are false (zero). ans =

If A is a matrix, treats columns of A as 1

vectors, returns a vector with 1’s and 0’s >> B = [0 0 0 0 0 0 ]

Continued on next page
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Table 5.4 – continued from previous page

Function Description Example

>> any(B)

ans =

0

find(A) If A is a vector, returns the indices of >> A = [0 7 4 2 8 0 0 3 9];

the non-zero elements. >> find(A)

ans =

2 3 4 5 8 9

find(A > d) If A is a vector, returns the address of >> find(A > 4)

the elements that are larger than d (any >> ans =

relational operator can be used). 4 5 6

5.7 Flow Control

Matlab has four kinds of statements you can use to control the flow

through your code:

if, else and elseif execute statements based on a logical test.

switch, case and otherwise execute groups of statements based on a logical

test.

while and end execute statements an indefinite number of times, based on

a logical test.

for and end execute statements a fixed number of times.

the if · · · end Structure

The basic form of an if statement is:

if test

statements

end
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The test is an expression that is either 1 (true) or 0 (false). The statements

between the if and end statements are executed if the test is true. If the

test is false the statements will be ignored and execution will resume at the

line after the end statement. The test expression can be a vector or matrix,

in which case all the elements must be equal to 1 for the statements to be

executed. Further tests can be made using the elseif and else statements.

if a < 30

count = count + 1

disp a

end

The if · · · else Structure

This structure allows you to execute a set of statements if a logical condi-

tion is true and to execute a second set if the condition is false. Its general

syntax is

if test

statement_1

else

statement_2

end

The if · · · elseif Structure

It often happens that the false option of an if . . . else structure is another

decision. This type of structure often occurs when we have more than two

options for a particular problem setting. For such cases, a special form of

decision structure, the if . . . elseif has been developed. It has the general

syntax:
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if test_1

statement_1

elseif test_2

statement_2

.

.

.

else

statement_else

end

Problem Statement. For a scalar, the built-in Matlab sign function re-

turns the sign of its argument (-1, 0, 1). Here’s a Matlab session that

illustrates how it works:

>> sign(25.6)

ans =

1

>> sign(-0.776)

ans =

-1

>> sign(0)

ans =
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0

Develop an M-file to perform the same function. Solution. First, an if

structure can be used to return 1 if the argument is positive:

function sgn = mysign(x)

% mysign(x) returns 1 if x is greater than zero.

if x > 0

sgn = 1;

end

This function can be run as

function sgn = mysign(x)

>> mysign(25.6)

ans =

1

Although the function handles positive numbers correctly, if it is run with

a negative or zero argument, nothing is displayed. To partially remedy

this shortcoming, an if. . . else structure can be used to display 1 if the

condition is false:

function sgn = mysign(x)

% mysign(x) returns 1 if x is greater than zero.

% -1 if x is less than or equal to zero.

if x > 0

sgn = 1;

else

sgn = -1;

end
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This function can be run as

>> mysign(-0.776)

ans =

-1

Although the positive and negative cases are now handled properly, -1 is

erroneously returned if a zero argument is used. An if . . . elseif structure

can be used to incorporate this final case:

function sgn = mysign(x)

% mysign(x) returns 1 if x is greater than zero.

% -1 if x is less than zero.

% 0 if x is equal to zero.

if x > 0

sgn = 1;

elseif x < 0

sgn = -1;

else

sgn = 0;

end

The function now handles all possible cases. For example,

>> mysign(0)

ans =

0
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5.7.1 The switch Structure

The basic form of a switch statement is:

switch test

case result1

statements

case result2

statements

.

.

.

otherwise

statements

end

The respective statements are executed if the value of test is equal to the

respective results. If none of the cases are true, the otherwise statements

are done. Only the first matching case is carried out. As an example, here

is function that displays a message depending on the value of the string

variable, grade.

grade = ’B’;

switch grade

case ’A’

disp(’Excellent’)

case ’B’

disp(’Good’)

case ’C’

disp(’Mediocre’)

case ’D’

disp(’Whoops’)
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case ’F’

disp(’Would like fries with your order?’)

otherwise

disp(’Huh!’)

end

When this code was executed, the message ”Good” would be displayed.

5.7.2 Loops

As the name implies, loops perform operations repetitively. There are two

types of loops, depending on how the repetitions are terminated. A for

loop ends after a specified number of repetitions. A while loop ends on

the basis of a logical condition.

The for . . . end Structure

A for loop repeats statements a specific number of times. Its general

syntax is

for index = start:increment:stop

statements

end

The for loop operates as follows. The index is a variable that is set at an

initial value, start. The program then compares the index with a desired

final value, stop. If the index is less than or equal to the stop, the program

executes the statements. When it reaches the end line that marks the

end of the loop, the index variable is increased by the increment and the

program loops back up to the for statement. The process continues until

the index becomes greater than the stop value. At this point, the loop

terminates as the
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Note that if an increment of 1 is desired (as is often the case), the

increment can be dropped.

For example,

for i = 1:5

disp(i);

end

When this executes, Matlab would display in succession, 1, 2, 3, 4, 5. In

other words, the default increment is 1.

The size of the increment can be changed from the default of 1 to any

other numeric value. It does not have to be an integer, nor does it have

to be positive. For example, step sizes of 0.2, 1, or 5, are all acceptable.

If a negative increment is used, the loop will ”countdown” in reverse.

For such cases, the loop’s logic is reversed. Thus, the stop is less than the

start and the loop terminates when the index is less than the stop.

For example,

for j = 10:-1:1

disp(j);

end

When this executes, Matlab would display the classic ”countdown” se-

quence: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
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Problem Statement. Develop an M-file to compute the factorial

0! = 0

1! = 1

2! = 2× 1 = 2

3! = 3× 2× 1 = 6

4! = 4× 3× 2× 1 = 24

5! = 5× 4× 3× 2× 1 = 120

...

Solution. A simple function to implement this calculation can be devel-

oped as

function fout = factor(n)

% factor(n):

% Computes the product of all the integers from 1 to n.

x = 1;

for i = 1:n

x = x * i;

end

fout = x;

end

which can be run as

>> factor(5)

ans =

125

This loop will execute 5 times (from 1 to 5). At the end of the process, x

will hold a value of 5! (meaning 5 factorial or 1× 2× 3× 4× 5 = 120).

94 CHAPTER 5. PROGRAMMING IN MATLAB

Notice what happens if n = 0. For this case, the for loop would not

execute, and we would get the desired result, 0! = 1.

Vectorization

The for loop is easy to implement and understand. However, for Matlab, it

is not necessarily the most efficient means to repeat statements a specific

number of times. Because of Matlab’s ability to operate directly on arrays,

vectorization provides a much more efficient option. For example, the

following for loop structure:

i = 0;

for t = 0:0.02:50

i = i + 1;

y(i) = cos(t);

end

can be represented in vectorized form as

t = 0:0.02:50;

y = cos(t);

end

It should be noted that for more complex code, it may not be obvious

how to vectorize the code. That said, wherever possible, vectorization is

recommended.

Preallocation of Memory

Matlab automatically increases the size of arrays every time you add a

new element. This can become time consuming when you perform actions

such as adding new values one at a time within a loop. For example, here

is some code that sets value of elements of y depending on whether or not

values of t are greater than one:
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t = 0:.01:5;

for i = 1:length(t)

if t(i)>1

y(i) = 1/t(i);

else

y(i) = 1;

end

end

For this case, Matlab must resize y every time a new value is determined.

The following code preallocates the proper amount of memory by using a

vectorized statement to assign ones to y prior to entering the loop.

t = 0:.01:5;

y = ones(size(t));

for i = 1:length(t)

if t(i)>1

y(i) = 1/t(i);

else

y(i) = 1;

end

end

Thus, the array is only sized once. In addition, preallocation helps reduce

memory fragmentation, which also enhances efficiency.

The while Structure

A while loop repeats as long as a logical condition is true. Its general

syntax is

while test

statements
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end

The statements between the while and the end are repeated as long as the

test is true. A simple example is

x = 8

while x > 0

x = x - 3;

disp(x)

end

When this code is run, the result is

x =

8

5

2

-1

A quick way to ’comment out’ a slab of code in an m-file is to enclose it

between a while 0 and end statements. The enclosed code will never be

executed.

The while . . . break Structure

Although the while structure is extremely useful, the fact that it always

exits at the beginning of the structure on a false result is somewhat con-

straining. For this reason, languages such as Fortran 90 and Visual Basic

have special structures that allow loop termination on a true test any-

where in the loop. Although such structures are currently not available

in Matlab, their functionality can be mimicked by a special version of the

while loop. The syntax of this version, called a while . . . break structure,

can be written as
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while (1)

statements

if test, break, end

statements

end

where break terminates execution of the loop. Thus, a single line if is used

to exit the loop if the tests true. Note that as shown, the break can be

placed in the middle of the loop (i.e., with statements before and after it).

Such a structure is called a midtest loop.

If the problem required it, we could place the break at the very begin-

ning to create a pretest loop. An example is

while (1)

if x < 0, break, end

x = x - 5;

end

Notice how 5 is subtracted from x on each iteration. This represents a

mechanism so that the loop eventually terminates. Every decision loop

must have such a mechanism. Otherwise it would become a so-called

infinite loop that would never stop.

Alternatively, we could also place the if . . . break statement at the very

end and create a posttest loop,

while (1)

x = x - 5;

if x < 0, break, end

end

It should be clear that, in fact, all three structures are really the same.

That is, depending on where we put the exit (beginning, middle, or end)

dictates whether we have a pre-, mid- or posttest. It is this simplicity that
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led the computer scientists who developed Fortran 90 and Visual Basic

to favor this structure over other forms of the decision loop such as the

conventional while structure

The pause Command

There are often times when you might want a program to temporarily

halt. The command pause causes a procedure to stop and wait until any

key is hit. A nice example involves creating a sequence of plots that a

user might want to leisurely peruse before moving on to the next. The

following code employs a for loop to create a sequence of interesting plots

that can be viewed in this manner:

for n = 3:10

mesh(magic(n))

pause

end

The pause can also be formulated as pause(n), in which case the procedure

will halt for n seconds. This feature can be demonstrated by implementing

it in conjunction with several other useful Matlab functions.

Examples

Problem Statement. The roots of a quadratic equation

f(x) = ax2 + bx+ c

can be determined with the quadratic formula

x =
−b±

√
b2 − 4ac

2a

Develop a function to implement this formula given values of the coeffi-

cients.

Solution. Top-down design provides a nice approach for designing an

algorithm to compute the roots. This involves developing the general
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structure without details and then refining the algorithm. To start, we

first recognize that depending on whether the parameter a is zero, we will

either have ”special” cases (e.g., single roots or trivial values) or conven-

tional cases using the quadratic formula. This ”big-picture” version can

be programmed as

function quadroots(a, b, c)

% quadroots: roots of quadratic equation

% quadroots(a,b,c): real and complex roots

% of quadratic equation

% input:

% a = second-order coefficient

% b = first-order coefficient

% c = zero-order coefficient

% output:

% r1 = real part of first root

% i1 = imaginary part of first root

% r2 = real part of second root

% i2 = imaginary part of second root

if a == 0

%special cases

else

%quadratic formula

end

Next, we develop refined code to handle the ”special” cases:

%special cases

if b ~= 0

%single root

r1 = -c / b
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else

%trivial solution

disp(’Trivial solution. Try again’)

end

And we can develop refined code to handle the quadratic formula cases:

%quadratic formula

d = b ^ 2 - 4 * a * c;

if d >= 0

%real roots

r1 = (-b + sqrt(d)) / (2 * a)

r2 = (-b - sqrt(d)) / (2 * a)

else

%complex roots

r1 = -b / (2 * a)

i1 = sqrt(abs(d)) / (2 * a)

r2 = r1

i2 = -i1

end

We can then merely substitute these blocks back into the simple ”big-

picture” framework to give the final result:

function quadroots(a, b, c)

% quadroots: roots of quadratic equation

% quadroots(a,b,c): real and complex roots

% of quadratic equation

% input:

% a = second-order coefficient

% b = first-order coefficient

% c = zero-order coefficient
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% output:

% r1 = real part of first root

% i1 = imaginary part of first root

% r2 = real part of second root

% i2 = imaginary part of second root

if a == 0

%special cases

if b ~= 0

%single root

r1 = -c / b

else

%trivial solution

disp(’Trivial solution. Try again’)

end

else

%quadratic formula

d = b ^ 2 - 4 * a * c;

if d >= 0

%real roots

r1 = (-b + sqrt(d)) / (2 * a)

r2 = (-b - sqrt(d)) / (2 * a)

else

%complex roots

r1 = -b / (2 * a)

i1 = sqrt(abs(d)) / (2 * a)

r2 = r1

i2 = -i1

end

end
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As highlighted by the shading, notice how indentation helps to make the

underlying logical structure clear. Also notice how .modular. the struc-

tures are. Here is a command window session illustrating how the function

performs:

>> quadroots(1,1,1)

r1 =

-0.5000

i1 =

0.8660

r2 =

-0.5000

i2 =

-0.8660

>> quadroots(1,5,1)

r1 =

-0.2087

r2 =

-4.7913

>> quadroots(0,5,1)

r1 =

-0.2000

>> quadroots(0,0,0)

Trivial solution. Try again

Problem Statement. Develop an M-file function to determine the average

value of a function over a range. Illustrate its use for the bungee jumper

velocity over the range from t = 0 to 12s :

v(t) =

√
gm

cd
tanh

(√
gcd
m
t

)
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where g = 9.81, m = 68.1, and cd = 0.25.

Solution. The average value of the function can be computed with stan-

dard Matlab commands as

>> t=linspace(0,12);

>> v=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);

>> mean(v)

ans =

36.0870

We can write an M-file to perform the same computation:

function favg = funcavg(a,b,n)

% funcavg: average function height

% favg=funcavg(a,b,n): computes average value

% of function over a range

% input:

% a = lower bound of range

% b = upper bound of range

% n = number of intervals

% output:

% favg = average value of function

x = linspace(a,b,n);

y = func(x);

favg = mean(y);

end

function f = func(t)

f=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);

end
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The main function first uses linspace to generate equally spaced x values

across the range. These values are then passed to a subfunction func in

order to generate the corresponding y values. Finally, the average value

is computed. The function can be run from the command window as

>> funcavg (0,12,60)

ans =

36.0127
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Matlab Applications

Since this is an introductory course, the applications are not extensive.

They are illustrative. You ought to recognize that the kinds of problems

you actually can solve with Matlab are much more challenging than the

examples provided.

Sample Problem 6.1: Exponential growth and decay

A model for exponential growth or decay of a quantity is given by

A(t) = A0e
kt,

where A(t) and A0 are the quantity at time t and time 0, respectively, and

k is a constant unique to the specific application. For function name and

arguments use At = expGD(A0,At1,t1,t), where the output argument At

corresponds to, and for input arguments use A0, At1, t1, t, corresponding

to A0, A(t1), t1, and t, respectively. Write a user-defined function that

uses this model to predict the quantity at time t from knowledge of and

at some other time.

Use the function file in the Command Window for the following two

cases:

(a) The population of Mexico was 67 million in the year 1980 and 79

million in 1986. Estimate the population in 2000.

(b) The half-life of a radioactive material is 5.8 years. How much of a

7-gram sample will be left after 30 years?
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Solution

To use the exponential growth model, the value of the constant k has to

be determined first by solving for k in terms of A0, A(t1), and t1,:

k =
1

t1
ln
A(t1)

A0
.

Once k is known, the model can be used to estimate the population at

any time. The user-defined function that solves the problem is:

function At=expGD(A0,At1,t1,t)

% expGD calculates exponential growth and decay

% Input arguments are:

% A0: Quantity at time zero.

% At1: Quantity at time t1.

% t1: The time t1.

% t: time t.

% Output argument is:

% At: Quantity at time t.

k=log(At1/A0)/t1; % Determination of k.

At=A0*exp(k*t); % Determination of A(t).

Once the function is saved, it is used in the Command Window to solve

the two cases.

For case a) A0 = 67, A(t1) = 79, t1 = 6, and t = 20 :

>> expGD(67,79,6,20)

ans =

116.03 % Estimation of the population in the year 2000.

For case b) A0 = 7, A(t1) = 3.5, (since t1 corresponds to the half-life,

which is the time required for the material to decay to half of its initial

quantity), t1 = 5.8, and t = 30.



107

>> expGD(7,3.5,5.8,30)

ans =

0.19 % The amount of material after 30 years.

Sample Problem 6.2: Motion of a projectile

Create a function file that calculates the trajectory of a projectile. The

inputs to the function are the initial velocity and the angle at which the

projectile is fired. The outputs from the function are the maximum height

and distance. In addition, the function generates a plot of the trajectory.

Use the function to calculate the trajectory of a projectile that is fired at

a velocity of 230m/s at an angle of 39◦.

Solution

The motion of a projectile can be analyzed by considering the horizon-

tal and vertical components. The initial velocity v0 can be resolved into

horizontal and vertical components

v0x = v0 cos (θ), and v0y = v0 sin (θ).

In the vertical direction the velocity and position of the projectile are

given by:

vy = v0y − gt, and y = v0yt−
1

2
gt2.

The time it takes the projectile to reach the highest point (vy = 0) and

the corresponding height are given by:

thmax =
v0y
g
, and hmax =

v20y
2g
.

The total flying time is twice the time it takes the projectile to reach the

highest point, ttot = 2thmax. In the horizontal direction the velocity is

constant, and the position of the projectile is given by:

x = v0xt.
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In Matlab notation the function name and arguments are entered as

[hmax, dmax] = trajectory(v0, theta). The function file is:

function [hmax,dmax]=trajectory(v0,theta)

%trajectory calculates the max height and distance of a

%projectile, and makes a plot of the trajectory.

%

% Input arguments are:

% v0: initial velocity in (m/s).

% theta: angle in degrees.

% Output arguments are:

% hmax: maximum height in (m).

% dmax: maximum distance in (m).

% The function creates also a plot of the trajectory.

g=9.81;

v0x=v0*cos(theta*pi/180);

v0y=v0*sin(theta*pi/180);

thmax=v0y/g;

hmax=v0y^2/(2*g);

ttot=2*thmax;

dmax=v0x*ttot;

% Creating a trajectory plot

% Creating a time vector with 200 elements.

tplot=linspace(0,ttot,200);

x=v0x*tplot;

% Note the element-by-element multiplication.

y=v0y*tplot-0.5*g*tplot.^2;

plot(x,y)

xlabel(’DISTANCE (m)’)

ylabel(’HEIGHT (m)’)
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title(’PROJECTILE’’S TRAJECTORY’)

After the function is saved, it is used in the Command Window for a

projectile that is fired at a velocity of 230m/s and an angle of 39◦.

>> [hmax,dmax]=trajectory(230,39)

hmax =

1.0678e+03

dmax =

5.2746e+03
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Sample Problem 6.3: Write a program to calculate average density, con-

ductivity and specific heat for water in the range of temperatures from 0

to 50◦C. Knowing that this parameters for water are a function of tem-

perature such as the following equations.
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The Density

ρ = 1200.92− 1.0056TK
◦ + 0.001084(TK

◦)2.

The conductivity

Kc = 0.34 + 9.278× 10−4TK
◦.

The Specific heat

CP = 0.015539(TK
◦ − 308.2)2 + 4180.9.

Note: take 11 point of temperatures

Solution

function [Average_density,Average_conductivity,...

Average_specificheat] = water()

ap=0;

aKc=0;

aCp=0;

% We note that the temperature in the above equations is given

% in Kelvin. Hence we must convert it from degree Celsius to

% Kelvin by the formula:

% " kelvin = degree Celsius + 273.15".

% The temperatures becomes now from 273 to 323 K.

% Also, note that the increment = 5 because we need 11 point

% of temperatures.

for T=273:5:323

p= 1200.92 - 1.0056*T+ 0.001084 * T^2;

Kc = 0.34 + 9.278 * 10^-4 *T;

Cp = 0.015539*(T - 308.2)^2 + 4180.9;

ap=ap+p;

aKc=aKc+Kc;
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aCp=aCp+Cp;

end

Average_density=ap/11;

Average_conductivity=aKc/11;

Average_specificheat=aCp/11;

end

After the function is saved, it is used in the Command Window as follows:

>> [Average_density,Average_conductivity,...

Average_specificheat] = water()

Average_density =

997.7857

Average_conductivity =

0.6165

Average_specificheat =

4.1864e+03

Sample Problem 6.4: Water flow in a river

To estimate the amount of water that flows in a river during a year, a

section of the river is made to have a rectangular cross section as shown.

In the beginning of every month (starting at January 1st) the height h of

the water and the speed v of the water flow are measured. The first day

of measurement is taken as 1, and the last daywhich is January 1st of the

next yearis day 366. The following data was measured:
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Day 1 32 60 91 121 152 182 213 244 274 305 335 366

h (m) 2.0 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0

v (m/s) 2.0 2.2 2.5 2.7 5.0 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2.0

Use the data to calculate the flow rate, and then integrate the flow rate

to obtain an estimate of the total amount of water that flows in the river

during a year.

Solution

The flow rate, Q (volume of water per second), at each data point is ob-

tained by multiplying the water speed by the width and height of the

cross-sectional area of the water that flows in the channel:

Q = vwh (m3/h).

The total amount of water that flows is estimated by the integral:

V = (60 · 60 · 24)

∫ t2

t1

Qdt.

The flow rate is given in cubic meters per second, which means that time

must have units of seconds. Since the data is given in terms of days, the

integral is multiplied by (60 · 60 · 24) s/day.

The following is a program written in a script file that first calculates

Q and then carries out the integration using the trapz command. The

program also generates a plot of the flow rate versus time.

>> w=8;

>> d=[1 32 60 91 121 152 182 213 244 274 305 335 366];

>> h=[2 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0];

>> speed=[2 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2];

>> Q=speed.*w.*h;

>> Vol=60*60*24*trapz(d,Q);
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>> plot(d,Q)

>> xlabel(’Day’), ylabel(’Flow Rate (m^3/s)’)

>> fprintf(’The estimated amount of water that flows in the

river in a year is %g cubic meters.’,Vol)

When we executed these steps in the Command Window, the estimated

amount of water is displayed and the plot is generated. Both are shown

below.

The estimated amount of water that flows in the river in

a year is 2.03095e+09 cubic meters.
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Sample Problem 6.5: Make a table of (x vs. y) values for the three

component ethanol, water and benzene a T = 373.15 k. Knowing that

the vapor pressure of these three components are calculated by:

Ethanol P ◦e = exp(18.5242− 3578.91/(T − 50.5)).

Water P ◦w = exp(18.3036− 3816.44/(T − 46.13)).

Benzene P ◦b = exp(15.9008− 2788.51/(T − 52.36)).

Where

Ki = P ◦i /Pt, Pt = 760, yi = Ki × xi.
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Note: take 11 point for each component form 0 to 1

Solution

function A = E_W_B()

T=373.15;

Pe=exp(18.5242-3578.91/(T-50.5));

Pw=exp(18.3036-3816.44/(T-46.13));

Pb=exp(15.9008-2788.51/(T-52.36));

Ke=Pe/760;

Kw=Pw/760;

Kb=Pb/760;

Xe=0:.1:1; Xw = Xe; Xb = Xe;

Ye=Ke*Xe;

Yw=Kw*Xw;

Yb=Kb*Xb;

A = [Xe’,Ye’,Xw’,Yw’,Xb’,Yb’];

end

After the function is saved, it is used in the Command Window as follows:

>> A = E_W_B()

A =

0 0 0 0 0 0

0.1000 0.2223 0.1000 0.1000 0.1000 0.1777

0.2000 0.4445 0.2000 0.2000 0.2000 0.3554

0.3000 0.6668 0.3000 0.3000 0.3000 0.5331

0.4000 0.8890 0.4000 0.4000 0.4000 0.7107

0.5000 1.1113 0.5000 0.5000 0.5000 0.8884
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0.6000 1.3335 0.6000 0.6000 0.6000 1.0661

0.7000 1.5558 0.7000 0.6999 0.7000 1.2438

0.8000 1.7780 0.8000 0.7999 0.8000 1.4215

0.9000 2.0003 0.9000 0.8999 0.9000 1.5992

1.0000 2.2225 1.0000 0.9999 1.0000 1.7769

6.1 Solution to Differential Equations

6.1.1 Creating Symbolic Expressions

Symbolic expressions are mathematical expressions written in terms of

symbolic variables. Once symbolic variables are created, they can be used

for creating symbolic expressions. The symbolic expression is a symbolic

object (the display is not indented). The form for creating a symbolic

expression is:

Expression name = Mathematical expression

A few examples are:

>> syms a b c x y % Define a, b, c, x, and y as symbolic variables.

>> f=a*x^2+b*x + c % Create the symbolic expression ax^{2} + bx + c

%and assign it to f.

f =

a*x^2 + b*x + c

Symbolic math functions can be used to solve a single equation, a system

of equations and differential equations. For example:

solve(f): Solves a symbolic equation f for its symbolic variable. If f is a

symbolic expression, this function solves the equation f = 0 for its sym-

bolic variable.
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solve(f1,...,fn): Solves the system of equations represented by f1,...,fn.

The symbolic function for solving ordinary differential equation is dsolve

as shown below: dsolve(’equation’, ’condition’): Symbolically solves the or-

dinary differential equation specified by ’equation’. The optional argument

’condition’ specifies a boundary or initial condition.

The symbolic equation uses the letter D to denote differentiation with

respect to the independent variable. D followed by a digit denotes re-

peated differentiation. Thus, Dy represents dy/dx, and D2y represents

d2y/dx2.

For example, given the ordinary second order differential equation;

d2x

dt2
+ 5

dx

dt
+ 3x = 7,

with the initial conditions x(0) = 0 and ẋ(0) = 1. The Matlab statement

that determines the symbolic solution for the above differential equation

is the following:

>> x = dsolve(’D2x = 5*Dx 3*x + 7’, ’x(0) = 0’, ’Dx(0) =1’)

The symbolic functions are summarized in Table 6.1

Table 6.1: Solution of equations

compose Functional composition

dsolve Solution of differential equations

finverse Functional inverse

solve Solution of algebraic equations

>> syms x y

>> f = x^2 +1

f =
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x^2 + 1

>> g = y + 2

g =

y + 2

>> h = compose(f,g)

h =

(y + 2)^2 + 1

compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x and y are

the symbolic variables of f and g respectively.

>> syms x

>> f = x^2

f =

x^2

>> finverse(f)

ans =

x^(1/2)
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>> f = x^2 + 2*x +1

f =

x^2 + 2*x + 1

>> finverse(f)

ans =

x^(1/2) - 1

finverse(f) returns the functional inverse of f. Here f is an expression or

function of one symbolic variable, for example, x. Then g is an expression

or function, such that f(g(x)) = x.

>> syms x

>> solve(x^2 +2*x - 3)

ans =

1

-3

>> solve(x^3 + x + 2)

ans =

-1

(7^(1/2)*i)/2 + 1/2

1/2 - (7^(1/2)*i)/2
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6.1.2 Calculus

There are four forms by which the symbolic derivative of a symbolic ex-

pression is obtained in Matlab. They are:

diff(f): Returns the derivative of the expression f with respect to the de-

fault independent variable.

diff(f,x): Returns the derivative of the expression f with respect to the

variable x.

diff (f,n): Returns the nth derivative of the expression f with respect to

the default independent variable.

diff(f,x,n): Returns the nth derivative of the expression f with respect to

the variable x.

>> x = [1 3 5 7 9];

>> diff(x)

ans =

2 2 2 2

>> syms x y

>> f = x^3*y + 5*sin(x) + 2

f =

5*sin(x) + x^3*y + 2

>> diff(f)

ans =
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5*cos(x) + 3*x^2*y

>> diff(f,x)

ans =

5*cos(x) + 3*x^2*y

>> diff(f,y)

ans =

x^3

>> diff(f,2)

ans =

6*x*y - 5*sin(x)

>> diff(f,y,2)

ans =

0

The various forms that are used in Matlab to find the integral of a symbolic

expression f are summarized as follows:

int(f): Returns the integral of the expression f with respect to the default

independent variable.
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int(f, x): Returns the integral of the expression f with respect to the

variable x.

int(f,a,b): Returns the integral of the expression f with respect to the

default independent variable evaluated over the interval [a, b], where a

and b are numeric expressions.

int(f,x,a,b): Returns the integral of the expression f with respect to the

variable x evaluated over the interval [a, b], where a and b are numeric

expressions.

>> syms x y

>> f = x*cos(y) + 2

f =

x*cos(y) + 2

>> int(f)

ans =

(x*(x*cos(y) + 4))/2

>> int(f,0,pi)

ans =

(pi*(pi*cos(y) + 4))/2

>> int(f,y)
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ans =

2*y + x*sin(y)

>> int(f,y,0,pi)

ans =

2*pi
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