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Abstract  The study of cellulose derivatives and magnetic field effects on their rheological properties 
(magnetorheological) is of evident practical importance because its ability to orient under the action of external fields. The 
orientation process is of great importance owing to the possibility of changes in structure and final products. The aim of this 
work was to study theoretically the effects of magnetic field on rheological behavior of some cellulose derivatives solutions. 
The studied samples are Ethyl cellulose (EC), Hydroxyethyl cellulose (HEC), Hydroxypropyl cellulose (HPC) and 
Carboxymethyl cellulose (CMC) dissolved in a suitable solvents. The influence of eight different solvents on solutions 
viscosity was investigated. Vshivkov and his group at the Department of Macromolecular Compounds at the Ural Federal 
University investigated experimentally the changes in magnetorheological properties of these solutions by using a Rheotest 
RN 4.1 rheometer. Their works covered the shear rates 1s15γ0 −≤≤   and concentration range from 04.0  to %wt41.0 . In 
this paper, we reconsider Vshivkov et al. works through collecting their experimental data and carry out its theoretical 
analysis based on Giesekus model for viscoelastic polymers. This model gives more accurate results and takes into account 
the effects of viscoelastic shear thinning characteristics, decreasing viscosity with increasing shear rate. The regions of 
existence of isotropic and anisotropic phases and their concentration dependence were discussed. It is found that a magnetic 
field increases the viscosities of all solutions under consideration. The study was extended to report the viscosity data of 
dilute aqueous suspension of cellulose nanocrystals (CNC). It has been treated as a dilute fiber suspension whose 
concentrations ranging from 0.5 to 8 wt% and its rheology are analyzed using Giesekus model. The orientation of CNC 
nanoparticles are described in terms of the fiber's second– and fourth–order orientation tensors established by Advani and 
Tucker. Finally, for adequate prediction of viscoelastic shear thinning characteristics of CNC suspensions as a function of 
both shear rate and concentration, simple correlations were proposed in terms of an exponential function.  
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1. Introduction 
Cellulose is the most abundant polymer on Earth, which 

makes it the most common organic compound. It is the 
primary constituent of wood, paper and cotton. Cellulose is 
linear and rigid polymer consisting of a cyclic structure of 
anhydroglucose units. When these units are hooked together, 
the structure of cellulose becomes as shown in Fig. 1a. The 
chemical character and reactivity of cellulose is determined 
by the presence of three hydroxyl (OH) groups in the 
glucose units, one primary and two secondary groups. The 
hydroxyl groups play an important role in the solubility of 
cellulose. The relative stiffness and rigidity of the cellulose 
molecule is mainly due to the intramolecular hydrogen 
bonding. This property is reflected in its high viscosity   
in solution,  a high tendency to crystallize, and its ability to  
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form fibrillar strands. Cellulose chains have a strong 
tendency to aggregate and to form highly ordered structures 
and structural entities. The history of the supramolecular 
structure of cellulose, started as early as 1913 when 
Nishikawa and Ono discovered the structure of fibrous 
cellulose by the well–defined X–ray diffraction patterns [1]. 
This finding lead to the conclusion that individual cellulose 
molecules tend to arrange themselves in a highly organized 
manner leading to a crystalline state. Based on these 
findings, scientists developed the fringed fibrillar model of 
the structure, which is still accepted theory of the 
supramolecular structure. As shown in Fig. 1b, the 
latticework represents the highly ordered (crystalline) 
region whereas elongated lines represent the low ordered 
(amorphous) regions. The supramolecular model of 
cellulose is based on the organization of cellulose chains 
into a parallel arrangements of crystallites and crystallite 
strands, which are the basic elements of the CNC fiber [2]. 
The intermolecular hydrogen bonding are considered to be 
the major contributors to the structure of cellulose, and is 
regarded as the predominant factor responsible for uniform 
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packing [3]. Today experimental evidence describes a 
two–phase model, which clearly divides the supramolecular 
structure into two regions: low ordered (amorphous) and 
highly ordered (crystalline) excluding the medium ordered 
regions completely [4]. 

While unmodified cellulose is insoluble in water, 
modification of the cellulose chain by attachment of small 
substituents may result in water solubility properties. 
Published information suggests that, the secondary 
hydroxyl present in a side chain is available for reaction 
with the oxide and chaining out may take place. In 1956, 
Flory [5] predicted that polymers with stiff linear chains 
would form ordered phases in their respective melt and in 
concentrated solutions. In 1980, this behaviour was reported 
for cellulose derivatives, such as HPC in water, which at 
high concentrations can reflect visible light due to its 
nematic structure [6]. HPC was also the first cellulosic 
derivative reported to form spontaneous anisotropic 
solutions when dissolved in aqueous and organic solvents 
[7]. Since that discovery, other cellulose derivatives 
including: ethyl cellulose (EC), HEC, CMC, and cellulose 
itself have also been reported to form ordered solutions 
[8-14]. 

When cellulose is etherified, the hydroxyls (OH) are 

replaced by the etherifying reagent. The final product is 
characterized by the degree of substitution (DS) which it is 
the average number of hydroxyls substituted per 
unhydroglucose unit. Therefore, EC is a derivative of 
cellulose in which some of the hydroxyl groups on the 
repeating glucose units are converted into ethyl ether groups. 
The properties of EC, as those of other cellulose derivatives, 
depend primarily up on the degree of substitution. It is 
practically insoluble in water but is soluble in varying 
proportions in certain organic solvents [15, 16]. While some 
solvents are excellent in dissolving EC polymer, they have 
limited or no application in the pharmaceutical industry 
because of their unacceptable effect on environment and 
health. EC find use in many applications, e.g. as water 
binders, film forming agents and in controlled release        
[17, 18]. They have been used in the fields of biotechnology, 
paints and foods [19-21]. Although interest in aqueous 
dispersions of ECs continues to interest, solvent–based EC 
extended release coating applications also continue to grow. 
The pure CMC is white or milk white fibrous powder or 
particles, odorless and tasteless. It is insoluble in organic 
solvents such as methanol, alcohol, diethyl ether, acetone, 
chloroform and benzene but soluble in water. Water 
solubility of CMC is affected by its DS and viscosity.  

 

Figure 1.  (a) Structure of cellulose, (b) Fringed fibril model of the supramolecular structure of cellulose 

Table 1.  Physical Properties of Used Cellulose Derivatives and Their Suitable Solvents; DMF–Dimethyl Formamide, DMAA– Dimethyl Acetamide, 
DMAA*– Dimethyl Acetamide with Macromolecules, DMSO– Dimethyl Sulfoxide 

Cellulose derivative Suitable solvents (DS) 
Molecular weight 

wM  ηM  nM  

Ethyl cellulose (EC) 

DMF 
DMAA 

DMAA* 
1.5, 2.5, 2.6 1.6×105 2.6×104 --- 

Hydroxyethyl cellulose (HEC) 

Water 
DMF 

DMF* 
2.5 --- 6.2×104 6.2×104 

Hydroxypropyl cellulose (HPC) 

Water 
Ethanol 

Ethylene glycol 
DMSO 

2.25, 3.2, 3.6 
1.6×105 
1.0×105 

--- 1.6×105 

Carboxymethyl cellulose (CMC) Water 0.7 --- 1.2×105 --- 
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Cellulose insolubility nature in common organic solvents 
and in water is due to the fact that the hydroxyl groups are 
responsible for the extensive hydrogen bonding network. In 
order to dissolve cellulose, one has to find a suitable solvent 
to break down the hydrogen bond network, i.e. the initial 
supramolecular structure of cellulose should be destroyed in 
order to obtain a homogeneous (one–phase) solution. The 
suitable solvents and their physical properties used in this 
study are listed in Table 1. The molecular weights of 
polymers are much larger than the small molecules usually 
encountered in organic chemistry. Most chain reaction 
produce chains with many different lengths, so polymers 
also differ from small molecules in that the polymer 
molecular weights are average values. One of the oldest 
methods of measuring the average molecular weight of 
polymers is by solution viscosity. The viscosity–average 
molecular weight lies somewhere between the number 
average and the weight average. Therefore, the molecular 
weights that are important in determining polymer 
properties are the number–average, Mn, the weight–average, 
Mw, and the viscosity–average, Mη molecular weights. 

Polymer molecules are long chain molecules composed of 
many repeating units. The bonds along the polymer 
backbone are continually rotating, and as a result, the 
molecule itself is continually changing its orientation and 
configuration. Polymer solutions can be considered as liquid 
mixtures made of long macromolecular chains, and small 
molecules of solvent [22]. At rest, the chains of polymers are 
randomly entangled and they do not set up the polymer 
structure. When the fluid is in motion, the chains tend to 
align themselves parallel to the direction of flow. This 
tendency increases with increasing in shear rate, so that the 
effective viscosity decreases [23]. In dilute polymer 
solutions, the rheology of solution is depends solely on the 
dynamics of an individual chain and the number of chains 
(i.e. concentration) in the system. At high concentrations, 
interactions between polymer molecules impact the rheology 
in a significant way. As concentration increases, polymer 
solutions exhibit a change from fluid–like to more 
elastic–like behavior [24]. Viscosities of solutions of 
polymeric liquids are known to be variable quantities which 
decreases with increasing shear rate. This shear–thinning 
effect has been known for a long time, but its adequate 
explanation is still absent. In the case of concentrated 
solutions, a varying viscosity is assumed to be due to the 
entanglement of macromolecular chains. For a dilute 
solution viscosity variations are associated with a behavior 
of separate molecules in the flow, i.e., their deformation, 
orientation, etc. 

In both cases indicated above, attraction forces between 
macromolecules are neglected. An alternative explanation of 
shear thinning is based on an assumption of macromolecular 
cross–linking. Cross–links are considered to be weak; they 
disappear and reappear again as a result of thermal motion. 
An average number of cross–links in the shear flow 
decreases when the shear rate is increased, which leads to a 
decreased apparent viscosity. 

The orientation of macromolecules in polymer solutions 
under the influence of an external magnetic field is of great 
importance owing to the possibility of changes in structure 
and the products formation. The molecules of cellulose and 
its derivatives have a rigid spiral conformation and can 
undergo ordering. Under the effect of magnetic field these 
macromolecules may be rearrange themselves so that taking 
the same direction as the magnetic field lines (i.e. oriented 
parallel with the magnetic lines), a circumstance that lead to 
an increase in polymer viscosity. The effects of shear rate, 
magnetic field and concentration on the rheological 
properties of cellulose derivatives were described by 
Vshivkov alone [25] and with his collaboration [26-30]. 

In recent years, cellulose nanocrystals (CNC) has been 
used in a wide variety of applications because of their 
nano–sized dimensions and other important properties. An 
increasing number of studies in the area o f cellulose nano 
composites have also been reported during the last few years 
because of the enormous interest in their industrial 
applications. The rheology of suspensions provide critical 
information for products in many industrial applications. The 
addition of nanoparticles to polymers greatly changed the 
rheological properties of their suspension. In order of 
suspension to give proper product performance, they must be 
stable. The stability of the final product is very complex 
process because of the variation in size and shape of 
nanoparticles. CNC are rod–like particles product from 
natural cellulose materials through mechanical disintegration 
[31-33]. In this process CNCs are conventionally rod–shaped 
nano–scale entities 5–20 nm in diameter and hundreds or 
thousands of nm in length. The flow properties of 
suspensions prepared from cellulose derivatives have been 
previously studied and its behaviour under shear has also 
been characterized [34-36]. 

The determination of rheological properties of dilute 
suspensions of cellulose nanocrystals systems are very 
important for its characterization. Various studies have 
shown that the viscoelastic properties of nano–composites 
depend strongly on the CNC content. In fact, the viscosity of 
all CNC–polymer nano–composites increased with 
increasing CNC content. Bercea and Navard [37] studied the 
viscosity of aqueous suspensions of tunicate cellulose 
nanocrystals and found that the phase state of CNC 
suspension can be determined based on changes in viscosity. 
Urena–Benavides et al. [38] investigated the rheological 
behaviour of cotton CNC suspension, and found that the 
phase behavior of CNC suspensions can be divided into four 
regions with different scaling relationships between 
rheological parameters and CNC concentrations. Lu et al. 
[39] studied the rheological and phase behaviors of rod–like 
nanocrystalline cellulose suspensions in aqueous media. 
They fitted the relative viscosity of the CNC suspension in 
the full concentration range tested. The fitting curves show 
that the viscosity increases monotonically with CNC 
concentration. Shafiei et al. [40] studied the effects of 
concentration and temperature on the rheological properties 
of micro–fibrillar cellulose aqueous suspensions. 

https://faculty.uscupstate.edu/llever/polymer%20resources/Synthesis.htm%23chain
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In this paper, we reconsider Vshivkov et al. [26-30] 
experimental data for cellulose derivatives, Lu et al. [39] and 
Shafiei et al. [40] data for dilute aqueous suspensions of 
CNC. We collect and reorder their experimental data and 
carry out its theoretical analysis based on Giesekus model for 
viscoelastic polymers. As we have seen from our previous 
papers [41, 42], this model takes into account the effects of 
shear thinning characteristics on the viscosity of the polymer 
solutions and gives more accurate results. Also, the effects of 
magnetic field on the magnetorheological properties of 
cellulose derivatives solutions are investigated. The chosen 
model fits adequately the experimental data of Vshivkov et 
al. for cellulose derivatives. Since CNCs are rod–like 
nanoparticles in suspension, so it has been treated as a dilute 
fiber suspension. The collected data were described by using 
the equation established by Advani and Tucker [43] which 
gives more accurate results. 

2. Problem Formulation 
2.1. Governing Equations for Cellulose Derivatives  

In the present paper, circular Couette flow occurs in the 
gap between two rotating concentric cylinders rheometer is 
investigated. The inner cylinder of radius 1R  rotates with 
constant angular velocity Ω . The apparatus has a height L 
which is much larger than the radius of either cylinder, see 
Fig. 2. In general, the momentum and continuity equations of 
steady MHD flow of incompressible viscoelastic fluid are 
given by: 

bρτPvvρ +⋅∇+−∇=∇⋅ ,          (1) 

0V =⋅∇ ,                (2) 

where ρ, v , P, τ , and "b" are respectively the density, 
velocity, pressure, extra stress tensor and the body force per 
unit mass. Notice that, in the presence of an applied magnetic 
field, the term BJFbρ B ×==  represents the Lorentz force 
due to magnetic field where J  is the current density and B  
is the magnetic induction vector. 

Many flow models have been proposed, which are useful 
for treatment of experimental data or for describing flow 
behavior. Such mathematical models range from the very 
simple to the very complex models. In this paper we select 
Giesekus model to describe the stress tensor for the polymers 
under consideration. The extra stress tensor τ  for this 
model can be written as [44-46]: 

ps
τττ += ,             (3) 

γη2τ ss
= ,               (4) 
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η
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p
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Here τ  is decomposed into a polymer contribution 
p

τ  

and a Newtonian solvent contribution 
s

τ . Also 

])v(v[γ T
2
1 ∇+∇=  denotes the shear tensor and the 

superscript ∇  stands for the upper–convected derivative. 
The parameters sη  and pη  are the solvent and polymer 

contributions to the zero–shear–rate viscosity, 1λ  is 
relaxation time and α denotes Giesekus mobility factor 
( 1α0 ≤≤ ). It is convenient to rewrite Eqs. (3) to (5) as a 
single constitutive equation by replacing 

p
τ  in the last 

equation with γη2τττ ss
−=− . This leads to: 
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where oη  is the zero shear rate viscosity, 2λ  is the 
retardation time and “a” is the modified mobility parameter. 
These parameters are related through the relations: 

pso ηηη += ;  
o

s
12 η

ηλλ = ; 
)λ/λ(1

αa
12−

= .    (7) 

Giesekus model is a special case of the Oldroyd 
8–constant model to which a term involving ττ ⋅  is 

added .The inclusion of ττ ⋅  term in Eq. (6) gives material 
functions that are more realistic than any other model. For 
example, large decreases in the viscosity and normal stress 
coefficients with increasing shear rate are possible. 

In the present study, a cylindrical coordinate system 
( z,θ,r ) is used. The magnetic field is applied either in x– or 

in z–direction as shown in Fig. 2 such that k̂BîBB zx += . 
From the physics of this problem, the flow is assumed to be 
axisymmetric ( 0θ/ =∂∂ ). Therefore, the velocity field, 
magnetic field vector and the stress tensor can be written as: 

[ ]0),r(v,0v θ= ,                (8a) 

[ ]zx B,0,θcosBB = ,             (8b) 
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with the choice of the velocity given in Eq. (8a), the 
continuity equation is satisfied automatically and Lorentz 
force takes the form: 

( )vBBσF 2
z

2
rB +−= ,             (9) 

where σ is the electrical conductivity of the fluid, 
)θcosB(B xr =  and zB  are the strength of an imposed 

uniform magnetic field in r–and z–directions respectively. 
With these simplifications, the momentum equation reduces 
to: 
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The boundary conditions are such that the inner cylinder 
rotates with constant angular velocity ẑΩ=Ω . The 
velocity at outer cylinder vanishes, 0)R(v 2 = , while at the 
surface of the inner cylinder is: 

θ̂)R()R(v 11 Ω= .            (12) 

The nonlinear stress term ττ ⋅  in Eq. (6) make it more 
difficult to obtain analytical solutions for the mathematical 
functions. 

2.2. Viscosity and Elastic Characteristics 

Experimental analysis of shear rate dependent viscosity 
for cellulose derivatives solutions and dilute suspensions of 
CNC requires high accuracy measurements, because 
viscosities of these materials only slightly exceed those of 
the solvents. This is one of the reasons why viscometric 
studies are essentially absent for dilute polymer solutions. 
Something of the shear dependent viscosity of dilute 
polymer solutions can be gained from experiments [47]. An 
important problem in this field is the establishment of 
rheological characteristics that determine hydrodynamic 
behavior of polymeric solutions, and development of 
techniques for measuring these characteristics. Maxwell's 
and Jeffrey's models of viscoelastic fluids are very simple 
and unable for the behavior description of the dilute polymer 
solutions. 

 

Giesekus model is characterizes by four parameters oη , 

1λ , 2λ  and a, which can be treated as the model's 
parameters. Limiting cases of the Giesekus model include 
the Newtonian fluid ( 0λλα 21 === ), the upper–convected 
Maxwell fluid ( 0λα 2 == ) and the Oldroyd–B fluid 
( 0α = ). However, by adding a small retardation term (e.g., 

3
12 10λ/λ −= ), the magnitude of the shear stress is always 

increasing with increasing shear rate. In general we must 
require 1α0 <<  for realistic shear thinning and 1α >  for 
shear thickening fluids and in general 21 λλ > . Giesekus 
model yields the following material functions (apparent 
viscosity η, first and the second normal stresses 1Ψ  and 

2Ψ ); [46]: 
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Figure 2.  Schematic representation of viscosity determination with magnetic lines of force directed (a, c) perpendicular and (b) parallel to the rotational 
axis of the rotor 
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1Ψ  and 2Ψ  are not taken into account here because of 
they can be measured only in un–symmetric regions such as 
eccentric cylinders or cone and plate rheometers. From this 
survey one can expect that sufficient realistic results will be 
observed for dilute solutions. It can thus be assumed that 
Giesekus model can be used in determination all rheological 
properties of cellulose derivatives and dilute CNC 
suspensions. 

3. Governing Equations  
3.1. CNC Suspension as a Fiber 

The rheological properties are the results of interaction 
among CNC fibers in the suspension flow. The volume 
fraction fV  (total volume of CNC fiber in a unit volume of 
suspension) and aspect ratio ra  (ratio of CNC fiber length 
to diameter) are two parameters influencing the rheological 
properties of suspensions. CNC Fiber interactions depend on 
its concentration, 2

rf aV , and length. Hence, suspensions are 
classified according to its concentration as [48, 49]: 
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The rheological properties of CNC fiber suspensions are 
classified as the following: 
  Dilute, low CNC fiber concentration is one in which the 

CNC fibers are never close to one another and do not 
interact [50, 51]. Therefore, each CNC fiber can freely 
rotate without any hindrance from surrounding CNC 
fibers with three rotational degrees of freedom. 

  Semi–dilute, intermediate CNC fiber concentration 
suspension would have no mechanical contact between 
the CNC fibers, but the hydrodynamic interactions 
become significant. 

  Concentrated suspensions, in which the CNC fiber 
orientation behavior becomes very complex. The 
average distance between two neighboring CNC fibers 
is less than its diameter. Therefore, CNC fiber cannot 
rotate independently, except about its own symmetrical 
axis. Any motion of the CNC fibers must involve a 
cooperative effort of all surrounding CNC fibers and 
fiber–fiber contacts are dominate. 

3.2. CNC Fiber Orientation Description 
The properties of CNC fiber suspension are highly 

dependent on the orientation of the CNC fibers in its flow 
domain. The orientation of a single CNC fiber within a 
continuous medium matrix can be described in spherical 
coordinate system by the unit vector )φ,θ(p  aligned along 

the axis of the CNC fiber as shown in Fig. 3, where p  is 
parallel to the major axis of CNC fiber with components: 

φcosθsinp1 = ; φsinθsinp 2 = ; θcosp3 = ,  (19) 

with, 1ppp 2
3

2
2

2
1 =++ . 

 
Figure 3.  Orientation of a single CNC fiber 

Let us now introduce the probability density function 
)φ,θ(Ψ  whose value gives the probability of CNC fiber 

oriented between the angles iθ  and θdθ i +  and iφ  and 
φdφ i +  as: 

,φdθdθsin)φ,θ(
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with the normalization condition on the unit sphere,  

1φdθdθsin)φ,θ(
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The distribution function )φ,θ(Ψ  is a complete 
description if the orientation of a single CNC fiber is 
unrelated to any other neighboring fibers. However, the 
calculations with the distribution function are too 
computationally cost when applied to industrially relevant 
flows. Therefore, the introducing of orientation tensors is a 
suitable way for describing the orientation state of CNC 
fibers. The orientation tensors are defined as [43, 52], 

∫
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where 2ℜ  is the unit sphere. The second–order tensor ijS  
consists of nine components, however, due to symmetry 
( jiij SS = ) the components is reduced to six. These tensor 
components can be written as: 
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the components of the fourth–order tensor ijklS  have all 
information needed to describe the CNC fiber orientation. 
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The normalization condition in Eqs (21) show the two 
fundamental symmetry properties of ijS : 

jiij SS =  and 1Sii = .         (24) 

The tensors have a simple physical interpretation. If the 
CNC fibers are randomly distributed, the second–order 
tensors are said to be: 

ijij δ
3
1S = ,                (25) 

or 
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Figure 4a shows isotropic orientation state, with equal 
orientation distribution in all directions. If all the CNC fiber 
lie in the xy–plane, Fig. 4b, which corresponds to planer 
random orientation state ijS  is simply: 


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S 2
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For perfectly aligned orientation in x–direction, Fig. 4c, 
ijS  is written as: 










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000
000
001

Sij .             (28) 

 
 
It is well understood that CNC fibers orient in response to 

flow kinematics, while the suspension rheology is defined in 
the concentration and orientation of the suspended fiber. The 
motion of a single CNC fiber in a Newtonian flow can be 
described by Jeffery’s model in its vector form as: 






 −⋅+⋅−= ppp:γpγβpω

Dt

pD
 ,       (29) 

where β is a constant defining as the shape factor of the fiber, 
it depends on the fiber aspect ratio ra  as: 

1a
1a

β
2
r

2
r

+

−
= ,             (30) 

for slender CNC fiber 1β → . In Eqs. (29), 
( )∇⋅+∂∂= vtDtD  is the material time derivative, 

[ ]T
2
1 )v(vγ ∇+∇=  is the shear rate or deformation tensor 

and [ ]T
2
1 )v(vω ∇−∇=  is the vorticity tensor. Instead of 

performing the integration and tedious calculation of the 
distribution function, an equivalent system of differential 
equations can be written that characterizes the orientation 
evaluation in terms of the tensors 

2
S  as:  

( ) 




 −⋅+⋅+⋅−⋅−=

42222
2 S:γ2γSSγβωSSω

Dt

SD


.  (31) 

The evolution equation of any orientation tensor contains 
next higher even–order tensor; say 

2
S  in Eq. (31) contains 

4
S . Thus, one needs a closure approximation to close the set 

of the evolution equations of the orientation tensors. A 
fourth–order closure may be expressed as: 

)S(FS
24

≈ ,                (32) 

where "F" is a function of the second–order tensor 
2

S . There 

are many methods proposed to address the closure problem. 
Most types of closure approximations is the linear one which 
originally introduced by Hand [53]: 

( )

( ) ,δSδSδSδSδSδS
)N4(

1

δδδδδδ
)N2)(N4(

1S

iljkikjlijkljkiljlikklij
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LL

ijkl

+++++
+

+++
++

−
=

(33) 

where ijδ  is the unit tensor and LN  refers to a space 
dimensions; i.e.,  





=
.D3in3
,D2in2

N L
           (34) 

This closure approximation is exact for a random 
distribution of CNC fiber orientations (an isotropic 
suspension). Also, it is exact for a completely isotropic 
distribution of CNC fiber orientations, 

klijijkl SSS = ,                (35) 

which is exact for aligned CNC fiber. 

3.3. Constitutive Equation for CNC Fiber Suspensions 
Several constitutive models have been proposed to 

describe the stress tensor for a suspension of CNC fibers in a 
Newtonian fluid. In general, the total extra stress tensor for 
the suspension, τ , is taken to be the sum of the stress 

contributions from the Newtonian solvent fluid 
s

τ , and 

from the fiber, 
f

τ . Hence, the resulting constitutive 

equations for the suspension can be expressed as [54]: 

fs
τττ += ,                (36) 

Figure 4.  Example of different CNC fiber orientation states 

 

(a) 3–D random  (c) aligned (b) planer random  
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γηIPτ ss
+−= ,            (37) 

To model the fiber stress tensor, Advani and Tucker [43] 
assumed that: 





 +





 ++= γμγ:SS:γμS:γμVητ 322241fsf

 ,  (38) 

where iμ  ( )3,2,1i = are positive material parameters 
specified by the particle aspect ratio, ra . For a slender shape, 
particle thickness can be ignored producing 2μ  and 3μ  
equal to zero. Therefore, typical CNC fiber stress tensor for 
dilute CNC suspensions can be expressed as: 

4f1sf
S:γVμητ = ,             (39) 

and 

( ) r

2
r

2
3

r

2
r

1 aln
a

a2ln

a
μ ≈

−
= ,         (40) 

3.4. Governing Equations for CNC Suspensions 

The total system of the CNC suspensions are governed by 
the following steady state equations: 
  The equation of conservation of linear momentum; 

Cauchy's dynamical equation of motion, 

bρτPvvρ +⋅∇+−∇=∇⋅ ,         (41) 

  Continuity equation (for incompressible fluid); 

0v =⋅∇ ,               (42) 

  CNC Fiber equation of state; 

( ) 




 −⋅+⋅+⋅−⋅−=

42222
2 S:γ2γSSγβωSSω

Dt

SD
 . (43) 

4. Test Materials  
From the end of the 2008s, systematic research onto 

magnetorheological of cellulose derivatives have been 
performed at the Department of Macromolecular 
Compounds at the Ural Federal University. The effects of 
shear rate, magnetic field and concentration on the 
rheological properties of cellulose derivatives were 
described by Vshivkov et al. [26-30]. The studied samples of 
cellulose derivatives are: EC, HEC, HPC and CMC. The 
used solvents were DMAA, DMAA* (DMAA with 
macromolecules), DMF, DMSO, ethylene glycol and 
ethanol. 

The corresponding author, molecular weight wM , DS 
and the used solvents for each cellulose derivatives are listed 
in Table 2. The solvent purity was studied through refractive 
index measurements [26]. The authors were prepared 
polymer solutions in sealed ampoules at certain temperature 
and concentration for several weeks. 

The CNC particle sample was prepared by acid hydrolysis 
of commercial dissolved kraft softwood pulp. Pulp was 
hydrolyzed with 64% sulfuric acid using a 1:8 weight ratio at 
50°C for 40min and then diluted with deionized water to 
quench the reaction. The suspension was then centrifuged at 
6000rpm for 10 min neutralized with 32CONa  and 
dialyzed to remove the salts. Finally, the suspension was 
dispersed in an ultrasonic bath to achieve a 1-2 wt% 
concentration stable suspension. CNC particles were 
obtained in powder form by lyophilizing the suspension. The 
aqueous nanoparticles suspensions at different fiber 
concentrations (5.3, 6, 6.6, 7.3, 8 wt% [39] and 0.5, 1, 1.5, 2 
wt% [40]) were then prepared and characterized in this 
study.  

Table 2.  Summary of Cellulose Derivatives with Its Suitable Solvents and Their Corresponding Author 

Materials solvents T (K) %wtC  (DS) wM  Author(s) 

EC 

DMAA 350 0.25 2.5 

1.6×105 

Vshivkov et al. [26] 

DMAA* 370 0.30 1.5 Vshivkov et al. [28] 

DMF 353 0.25 2.6 Vshivkov and Soliman [29] 

HEC 

DMF 350 0.15 

2.5 --- 

Vshivkov et al. [26] 

DMF* 370 0.15 Vshivkov et al. [28] 

Water 298 0.10 Vshivkov et al. [26] 

HPC 

Water 298 0.10 2.25 
1.6×105 

Vshivkov et al. [26] 

Ethylene glycol 363 0.15 3.6 Vshivkov and Soliman [29] 

DMSO 368 0.10 
3.2 1.0×105 

Vshivkov and Soliman [30] 

Ethanol 333 0.41 Vshivkov and Soliman [30] 

CMC Water 293 0.04 0.7  Vshivkov and Byzov [27] 

CNC Water 298 
5.3, 6, 6.6, 7.3, 8.0 --- --- Lu et al. [39] 

0.5, 1.0, 1.5, 2.0 --- --- Shafiei et al. [40] 
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5. Viscosity Measurements 

Vshivkov and his groups investigated experimentally the 
changes in magnetorheological properties of cellulose 
derivatives solutions by using a Rheotest RN 4.1 rheometer 
over shear rates 1s15γ0 −≤≤  . Their works covered the 
concentration range from 04.0  to %wt41.0 . Figure 5 
shows schematic representation of Rheotest RN 4.1 
rheometer and its installation method in magnetic field. The 
device is modified by Vshivkov and Soliman [29] utilizes a 
concentric cylinders geometry in which the inner cylinder of 
radius 1R  is rotated with angular velocity Ω and the outer 
cylinder of radius 2R  is held in a fixed position. The shear 
rate γ  and the dynamical viscosity )γ(η   of a sample is 
calculated according to the following equations: 

12

1

RR
R

γ
−
Ω

= ,              (44) 

Ω

−
=

LRπ2
)RR(G

)γ(η
3
1

12
 ,            (45) 

where L is the height of the cylinders and G is the torque on 
inner cylinder. The assumptions used in deriving Eq. (45) 
does not hold near the bottom of the viscometer. In order to 
compensate for this end effect, the bottom of the inner 
cylinder is actually constructed with a conical shape, as in 
Figs. 5a and 5c; the flow at the bottom is thus a cone and 
plate flow. The gap is assumed to be narrow, that is 

1R/)RR( 112 <<− . Therefore, the viscosity expression 
)γ(η   for this geometry must be corrected to the following 

form [46]: 

( )[ ]Ω+

−
=

L3/R1LRπ2
)RR(G

)γ(η
1

3
1

12
 .         (46) 

Type of viscometer makes it possible to measure viscosity 
of aqueous solutions at shear rates from 50 to 200 s-1. High 
accuracy enabled us to investigate viscosity variations for 
low concentration solutions, in particular, when the solution 
viscosity exceeded that of the solvent one. 

Solutions viscosity were determined on a modified 
Rheotest RN 4.1 rheometer with a cylindrical working unit 
made from a weakly magnetic material, such as brass. A 
metallic rotor rotating in a magnetic field represents a 
generator closed on itself. During operations of the generator, 
a slowdown torque is induced as a result of electromagnetic 
moment. Therefore, during shear stress measurements, the 
measured stress exceeds the true stress by a value related to 
the electromagnetic moment. The true shear stress for 
solutions was calculated as the difference between the 
measured and correction values for the same shear rate. The 
effect of a magnetic field on the rheological properties of 
solutions was studied with the use of the following two 
magnets: 
  the first magnet, which induces a magnetic field with 

an intensity of kOe7.3Bx =  and field lines directed 
perpendicularly to the rotational axis of a rotor. 

  the second magnet, with an intensity of kOe6.3Bz =  
and field lines parallel to the axis of rotor rotation.  

The working unit with a solution was placed into the 
magnetic field at K298  and kept for 20min, then the 
viscosity in the presence of the magnetic field were 
measured at an increasing shear rate from 0 to 1s15 − . 
During magnetic field application, the solution viscosity 
grows as a result of orientation of chains molecules under a 
magnetic field in parallel with the line of force. The magnetic 
field components are θcosBB xr =  and zB  imposed in 
r–and z–directions respectively. The, processes occurring 
during the flow of solutions in the presence of a magnetic 
field may be represented with the help of Fig. 5 as the 
following: 
  In quadrant I, field lines are parallel to the rotational 

axis, Fig. 5b. The orientation of molecules chains and 
the flow direction coincide with opposite directions. In 
this case, the viscosity may decrease  
( x

o
xr B180cosBB −== ). 

  In quadrant III, field lines are parallel to the rotation 
axis. The orientation of molecules chains and the flow 
direction are coincides and are in same directions. In 
this case, the viscosity may increase  
( x

o
xr B0cosBB == ). 

  In quadrant II, molecules chains are oriented 
perpendicularly to the flow direction 
( 090cosBB o

xr == ). Therefore, the viscosity 
remains unchanged. 

  In quadrant IV, molecules chains are oriented 
perpendicularly to the flow direction 
( 0270cosBB o

xr == ) and again the viscosity 
remains unchanged. 

  When the magnetic lines are parallel to the rotational 
axis, zB  in Fig. 5c, the molecules chains are oriented 
along the axis of rotation, that is, perpendicularly to the 
flow direction. As a result, viscosity may increase.  

Lu et al. [39] measured the viscosity of the CNC aqueous 
suspensions on an AR–G2 rheometer (TA Instruments, 
USA). The measurements are taken in the shear rate ranging 
from 0.01 to 1s100 − . Temperature control was established 

with a Thermo–Cube kept within oC05.0±  of the desired 
temperature. Shafiei et al. [40] carried out the viscosity 
measurements on a rotational rheometer (MCR 501 Anton 
Paar Physica) with parallel flat stainless steel plate geometry 
of nm50  in diameter and nm1  gap. All rheological 
measurements were performed at temperature of K298 . 
Then to describe the flow property, steady state shear 
viscosity was monitored by increasing the shear rate γ  

from 0.01 to 1s100 − .  
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Figure 5.  Schematic representation for installation method of the rheometer in magnetic field (side view), where N and S are electromagnet poles Bx and Bz 
are the magnetic field intensity in x– and z–directions respectively 

6. Results and Discussion 
6.1. Cellulose Derivatives Flow Curves 

In this section fitting results of the experimental data given 
in [26-30] and [39, 40] are overviewed to give a coherent 
picture about the rheological behaviors of the considered 
solutions and suspensions. Four sets of cellulose derivatives 
experimental data were used in order to describe their 
rheological behavior, see Table 3. A good fit for the 
experimental flow curves can be obtained starting from the 
understanding the effects of the Giesekus parameters on the 
flow curve under consideration and finding the proper values 
for these parameters. Then by inserting the proper values in 
the Giesekus model explained above we can draw a 
theoretical curves. The proper parameters values must able 
the theoretical curve to catch the experimental points. 
Giesekus model contains four parameters: the zero shear rate 
viscosity ( oη ), the retardation time ( 1λ ), the relaxation time 
( 2λ ) and the shape factor (a). The suitable values of the four 
Giesekus parameters required for the best fit are listed in 
Table 3 for each cellulose derivative with its suitable 
solvents. 

Figures 6 show the dependences of the viscosity of EC 
solutions on shear rate in the presence and in the absence of a 
magnetic field for 0.25wt% EC–DMAA–system (Fig. 6a), 
0.3wt% EC–DMAA*–system (Fig. 6b) and 0.25wt% 
EC–DMF–system (Fig 6c). Similar work were obtained for 
other HEC, HPC and CMC solutions in Figs. 7a, 7b and 7c, 
Figs. 8a, 8b, 8c and Fig. 9. The studied solutions are 
non–Newtonian fluids, the viscosity decreases when the 
shear rate increases. As seen in Figs. 6 to 9, samples exhibit 
shear thinning over the whole shear rate range investigated. 
By increasing shear rate, the velocity drops significantly and 
its profile changes to one exhibiting three discrete regions as 
the following, see Fig. 6b: 

  Region I in which the velocity profile consists of a shear 
thinning at low shear rate, a situations that indicates the 
breaking of the initial structures of polymer solutions. 

  Region II at intermediate shear rates, where the 
solutions viscosity continue to decrease and the 
molecules chains orient along the flow direction during 
deformation. 

  Region III at high shear rates, where the shear stress is 
high enough to destroy the liquid domains into 
individual molecule chains and orient these chains 
along the flow direction. Therefore, the viscosity tends 
to become a constant value. 

To study the effects of magnetic field and shear rate on the 
rheological behavior of cellulose derivatives solutions, 
Vshivkov et al. applied two magnetic fields, one in 
x–direction kOe7.3Bx =  and the other in z–direction 

kOe6.3Bz =  to various suspensions and measured their 
viscosity. During analysis of the viscosity data, we must 
taken into account that the viscosity is affected by shear rate 
and the applied magnetic field. As we have seen above, the 
viscosity of all samples decreases with increasing shear rate 
and increases with increasing the applied magnetic field. 
Figures 6 to 9 show flow curves for all used solutions in the 
presence and in the absence of the magnetic field. In low 
concentration solutions, molecules chains are few and the 
field effect is insignificant. The number of molecules 
capable of orientation in the magnetic field increases with 
the polymer concentration, and the field effect on the system 
properties becomes stronger. The increase in solutions 
viscosity with concentration is related to an increasing 
number of magnetically sensitive molecular chains. 
However, at high concentrations, the number of 
entanglements network increases and begins to hinder the 
orientation processes and the influence of the field on 
viscosity of solutions decreases. 
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Table 3.  Proper Parameters of Giesekus Model for Cellulose Derivatives and Their Suitable Solvents 

Cellulose 
Derivative Solvents 

Giesekus Model Parameters 

)s.Pa(ηo  )s(λ1  12 λ/λ  a 

B=0 BZ=3.6 BX=3.7 B=0 BZ=3.6 BX=3.7 B=0 BZ=3.6 BX=3.7 B=0 BZ=3.6 BX=3.7 

EC 

DMAA 76.00 118.0 113.0 0.70 0.80 0.90 0.650 0.430 0.480 0.200 0.350 0.250 

DMAA* 0.019 0.025 0.063 0.70 0.80 0.90 0.400 0.400 0.160 0.800 0.600 0.400 

DMF 88.00 112.0 127.0 0.85 1.40 1.40 0.300 0.250 0.250 0.700 0.340 0.400 

HEC 

DMF 1400 2000 4700 0.52 0.45 0.43 0.001 0.001 0.001 0.970 0.930 0.990 

DMF* 0.001 0.002 0.009 0.55 0.50 0.85 0.010 0.010 0.001 0.970 0.930 0.940 

Water 930.0 1100 680.0 0.95 0.95 0.93 0.051 0.010 0.010 0.250 0.700 0.990 

HPC 

Water 28.50 26.80 22.20 0.96 0.95 0.30 0.510 0.580 0.100 0.012 0.012 0.005 

Ethylene glycol 730.0 --- 1500 0.55 --- 0.55 0.130 --- 0.010 0.700 --- 0.800 

DMSO 1.600 2.800 3.500 0.70 0.80 0.90 0.600 0.380 0.260 0.500 0.950 0.600 

Ethanol 3.800 4.800 6.500 2.50 1.10 1.10 0.430 0.290 0.290 0.900 0.900 0.990 

CMC Water 9.100 --- 12.00 1.00 --- 1.20 0.001 --- 0.100 0.010 --- 0.010 

 

 

 

 

Figure 6.  Viscosity–shear rate curves for EC solutions in (a) DMAA 
%wt25.0C = , (b) DMAA* %wt3.0C =  and (c) DMF %wt25.0C =  at 

different values of magnetic field where dots represent the experimental data 
taken from [26, 28, 29] and solid lines represent Giesekus model fit 
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Figure 7.  Viscosity–shear rate curves for HEC solutions in (a) DMF 
%wt15.0C = , (b) DMF* %wt15.0C =  and (c) water %wt10.0C =  at 

different values of magnetic field where dots represent the experimental data 
taken from [26, 28, 26] and solid lines represent Giesekus model fit 

 

 

 

Figure 8.  Viscosity–shear rate curves for HPC solutions in (a) water 
%wt10.0C = , (b) Ethylene glycol %wt15.0C = , (c) DMSO 
%wt10.0C =  at different values of magnetic field where dots represent the 

experimental data taken from [26, 29, 30] and solid lines represent Giesekus 
model fit 
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Figure 8.  (d) Viscosity–shear rate curves for HPC solutions in Ethanol 
%wt41.0C =  at different values of magnetic field where dots represent the 

experimental data taken from [30] and solid lines represent Giesekus model 
fit 

 

Figure 9.  Viscosity–shear rate curves for CMC solutions in water 
%wt04.0C =  at different values of magnetic field where dots represent the 

experimental data taken from [27] and solid lines represent Giesekus model 
fit 

6.2. Relaxation Character of Cellulose Derivatives 
Viscosity  

To investigate the relaxation character of the viscosity 
behavior of cellulose derivatives solutions, Vshivkov et al. 
measured the solutions viscosities via two steps, shear rate 
was increased from 0 to 13s-1 for 10 min (loading) and at the 
second step, the shear rate was decreased from 13 to 0 s-1 for 
10 min (unloading). Figure 10a show the two successive 
steps of determination the viscosity values of HPC–Ethylene 
glycol system during loading (filled symbols) and unloading 
(open symbols) in the absence of the magnetic field. By 

using the same sample, the loading and unloading curves do 
not coincide; i.e., a hysteresis loop is observed. Clearly 
higher viscosities for the increasing shear rate experiments 
are observed at low shear rates. In fact, when a test is 
performed the structure network of the HPC solutions is 
gradually destroyed as the shear rate increases. Hence, in the 
second experiments conducted from decreasing shear rates 
on the same sample, lower viscosity values are observed. 
From this behavior, it can be concluded that the network 
broken down in increasing shear test cannot be reformed 
with the same strength in decreasing shear test. Similar 
results were obtained for more concentrated HPC solutions. 
As shown in Fig. 10b, the application of a magnetic field 
results in increased viscosity values and, hence, relaxation 
times. 

 

 

Figure 10.  Viscosity–shear rate curves for HPC solution in ethylene 
glycol %wt15.0C =  for increasing and decreasing shear rate and in (a) the 
absence of magnetic field ( 0B = ) and (b) at 7.3Bx =  where dots 
represent the experimental data taken from [29] and solid lines represent 
Giesekus model fit 
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6.3. CNC Suspensions Flow Curves 

To study the effects of shear rate on the rheological 
behavior of dilute aqueous CNC suspensions, data measured 
by Lu et al. [39] and Shafiei et al. [40] are considered. The 
dependence of the viscosity of CNC suspensions on shear 
rate as measured by Lu et al. can be seen in Fig. 11a. Data are 
obtained at 298K and at different values of concentrations. 
The range of shear rate is sufficient to cover the regions in 
which the viscosities at high shear rates arise to some 
constant values. In the range of low and intermediate shear 
rates, the viscosity is a function of concentration. Similar 
depends were obtained from that data measured by Shafiei et 
al. in Fig. 11b. The studied suspensions are non–Newtonian 
fluids, the viscosity decreases when the shear rate increases, 
a situations that indicates the breaking of the initial structures 
of polymer suspensions and the orientation of fibers along 
the flow direction during deformation. The velocity drops 
significantly and its profile changes to one exhibiting three 
discrete regions as the following: 
  Region I in which the velocity profile consists of a shear 

thinning at low shear rate due to the alignment of the 
CNC fibers. 

  Region II at intermediate shear rates, where the fibers 
have continuous alignment and oriented along the shear 
direction. 

  Region III at high shear rates, where the shear stress is 
high enough to destroy the liquid domains into 
individual fibers and orient them along the flow 
direction. 

According to Fig. 11, although the decrease in viscosity 
becomes level off at low concentrations, it still significant in 
the first shear thinning region of the viscosity profiles. The 
Giesekus model parameters for dilute aqueous CNC 
suspensions are given in Table 4. 

Table 4.  Giesekus Model Parameters for CNC Aqueous Suspensions at 
Different Concentrations 

Author(s) Concentration 
%wtC  

Giesekus Model Parameters 

)s.Pa(ηo  )s(λ1  12 λ/λ  a 

Lu et al. 
[39] 

5.3 0.30 0.12 0.22 0.18 

6.6 1.12 0.15 0.10 0.24 

7.3 3.70 0.20 0.03 0.30 

8.0 7.70 0.10 0.01 0.80 

Shafiei  
et al. [40] 

0.5 2.2 3.0 0.001 0.051 

1.0 9.0 3.0 0.001 0.051 

1.5 20.0 3.0 0.008 0.051 

2.0 85.0 3.0 0.008 0.051 

It is clear that, at low concentrations, the CNC suspensions 
behaved approximately as a Newtonian fluid i.e. η is 
constant for a wide range of γ . The interaction between 
CNC fibers leads to increased η as the CNC concentration 
increased. For all samples studied by Lu et al. [39] and 
Shafiei et al. [40], the viscosity of these suspensions 
possesses viscoelastic shear thinning characteristics. This 

shear thinning behavior is due to break down of NCN bond 
network under the application of shear and the alignment of 
individual CNC fibers in the direction of shear. However, it 
must be pointed out that the viscosity measured by Shafiei  
et al., Fig. 11b, at each constants shear rate and concentration 
are higher than those measured by Lu et al., Fig. 11a. This 
arises as a result of the difference in the dimensions of CNC 
fibers during preparation. 

 

  
Figure 11.  Viscosity–shear rate curves for CNC aqueous suspensions at 
different concentrations where dots represent the experimental data taken 
from (a) Lu et al. [39] and (b) Shafiei et al. [40] and solid lines represent 
Giesekus model fit 

6.4. Effect of Concentration on the Viscosity of CNC 
Suspensions 

The shear rate and viscosity properties of CNC 
suspensions are now well documented. They can undergo a 
phase shift from an isotropic to an anisotropic state before 
gelling. At low concentrations CNC fibers did not interact 
much with each other. The suspensions were characterized 
by a Newtonian plateau, where Brownian motion dominates 
over shear. As the shear increased, the hydrodynamic forces 
oriented particles under flow, which decreases the viscosity. 
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At higher concentrations, the system become biphasic with 
both anisotropic and isotropic phases. The relationship 
between the concentration of CNC suspensions and its 
viscosity at constant shear rates is shown in Fig.12a. It can be 
observed that for concentrations up to 1.5wt%, the CNC 
suspension presented similar behaviors, which is an increase 
for viscosities with the concentration. For concentration 

%wt5.1C > , there is a sudden increase in viscosity. We can 
state that the concentration functionality of CNC 
suspensions is due to the increase in the CNC fibers 
interactions. Referring to my previous paper [42] we can 
relate the measured viscosity to shear rate and concentration 
using the following formula: 

( ) )γ(ηCbExpa)C,γ(η 11  = ,         (47) 
 

 

 

Figure 12.  (a) Concentration dependence of CNC suspension viscosity as 
calculated in [40] where dots represent the experimental data (b) The 
combined effects of γ  and C on η of CNC suspension in 3D 

where 1a  and 1b  are constants. Since Giesekus model 
accurately predicts the viscosity as a function of shear rate. 
Hence, the term ( )CbExpa 11  is equivalent to oη  in Eq. 
(13) and the term )γ(η   is given by: 

( )
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the function "f" in the last equation is given in Eq. (16). The 
values of the parameters 1a  and 1b  are calculated and a 
new proposed correlation which predict the viscosity of CNC 
suspensions is: 

( ) )γ(ηC2.235Exp72.0)C,γ(η  = .      (49) 

The combined effects of shear rate and concentration on 
CNC suspension viscosity can be seen in Fig. 12b (in three 
dimensions form). 

The viscosity of CNC suspensions were measured at 
concentrations 5.3, 6.6, 7.3, and 8wt% [39] and at 0.5, 1, 1.5, 
2 and 2.5wt% [40] at K298 . Figure 12 shows that, the 
viscosity of the suspensions with concentrations up to 1wt% 
showed Newtonian behaviour as the viscosities were not 
affected by the shear rate. However, shear thinning 
behaviour was observed as the viscosity decreased with 
increasing applied shearing stress for those concentration 
above 1wt%. The regions of cholesteric phase, as shown in 
Fig. 12a, is described by Onogi and Asada [55] for CNC 
suspensions. Region I corresponds to the flow of accumulate 
fibers. Region II corresponds to a transition state. Region III 
is the shear thinning of suspension of dispersed fibers under 
high shear forces, which spend most of their times aligned 
with the flow. 

7. Conclusions 
The objective of this work is to investigate the measured 

data behaviour of some cellulose derivatives (EC, HEC, 
HPC and CMC) dissolved in eight acceptable solvents and 
rheology of dilute aqueous suspensions of cellulose 
nanocrystals. We reconsider Vshivkov et al. measured data 
on Rheotest RN 4.1 rheometer for cellulose derivatives at 
concentrations 0.04, 0.1, 0.15, 0.25, 0.3 and 0.41wt% and Lu 
et al. and Shafiei et al. measured data on AR–G2 rheometer 
for CNC suspensions at concentrations 0.5, 1, 1.5, 2, 5.3, 6.6, 
7.3 and 8 wt%. The viscosities of the analyzed solutions and 
suspensions were determined by fitting the data using 
Giesekus model for viscoelastic polymers. Advantage of 
using Giesekus model fit is the possibility of carrying out the 
theoretical analysis for viscosity measurements once an 
initial parameters have been performed. 

As seen from the figures, all samples exhibit shear 
thinning over the whole shear rate range investigated. The 
effects of magnetic field on rheological properties of 
cellulose derivatives have been investigated. Polymer 
viscosity is decreased by increasing the magnetic field 
strength. This is due to the molecules of cellulose derivatives 
are characterized by a rigid helical configuration. These 
molecules orient themselves in the magnetic field so that 
their long chains are oriented parallel to the magnetic field 
lines.  

The CNC suspensions exhibit a similar behavior. At low 
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concentrations (up to 1wt%), the CNC suspensions have a 
very low viscosity almost independent of the shear rate 
(Newtonian behaviour ) due to the Brownian motion of the 
CNC fibers, which prevents them to orient under flow. At 
very high shear rates, the shear forces tend to orient the fibers 
along the flow, which leads to a trivial shear thinning of the 
suspensions. Increasing the concentration above 1wt%, the 
anisotropic phase appears at low shear rates because the 
fibers start coming into closer contact. With the help of 
reported information and illustrated figures, the following 
conclusions can be deduced: 
  The possibility of analyzing the experimental data using 

Giesekus model supports the fact that this model gives 
better and more accurate results, as it can be applied in 
dilute suspensions and polymeric solutions. 

  Moreover, the theoretical analysis shows that cellulose 
derivatives solutions and CNC suspensions are 
characterized by five parameters ( a,λ,λ,η 21o  and C) 
which must be determined when measuring the flow 
properties of solutions or suspensions.  

  A theoretical analysis confirmed that increasing the 
magnetic field strength decreases the viscosity of the 
polymeric liquid. 

  The viscosity of the solutions with low concentrations 
showed Newtonian behaviour as the viscosities were 
not affected by the shear rate. However, by increasing 
the concentrations the shear thinning behaviour was 
observed as the viscosity decreased with increased 
applied shearing stress. 

  The drop in viscosity is very sharp as shear rate 
increases slightly. 

  Depending on the concentration, three flow regions are 
observed. At low concentration, the rheological 
behaviour simulate a linear relationship (Newtonian 
fluid) which indicates that the shear rate has less effect 
on viscosity. While at high concentration, the shear rate 
has a large effect on viscosity of polymer which 
simulate the non–Newtonian fluids. 

  Final conclusion in this paper is that, the Giesekus 
model able to describe the rheological properties of any 
viscoelastic polymer. Before embarking on this 
description you must first know the values of the model 
parameters ( a,λ,λ,η 21o ) that make the theoretical 
curve catches the experimental data. 
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